At-Sea Measurement of the Effect of Ship Noise on Mussel Behaviour
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Mussel Behaviour Monitoring
2.3. Acoustic Field Measurement
- (1)
- The sound source is at a distance greater than one wavelength at the lowest frequency of interest, and;
- (2)
- The lowest frequency of interest is higher than the cut-off frequency of the waveguide formed by the bottom and the sea surface.
3. Results
3.1. Description of the Acoustic Environment of the Experimental Sites
3.2. Mussel Reactions to Noise
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rako-Gospić, N.; Picciulin, M. Chapter Four—Addressing underwater noise: Joint efforts and progress on its global governance. In Advances in Marine Biology; Sheppard, C., Ed.; Academic Press: London, UK, 2023; Volume 94, pp. 201–232. [Google Scholar] [CrossRef]
- Borja, A.; Elliott, M.; Andersen, J.H.; Cardoso, A.C.; Carstensen, J.; Ferreira, J.G.; Heiskanen, A.-S.; Marques, J.C.; Neto, J.M.; Teixeira, H.; et al. Good environmental status of marine ecosystems: What is it and how do we know when we have attained it? Mar. Pollut. Bull. 2023, 76, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Weilgart, L.S. A Brief Review of Known Effects of Noise on Marine Mammals. Int. J. Comp. Psychol. 2007, 20, 159–168. [Google Scholar]
- Erbe, C.; Dunlop, R.; Dolman, S. Effects of Noise on Marine Mammals. In Effects of Anthropogenic Noise on Animals; Slabbekoorn, H., Dooling, R., Popper, A., Fay, R., Eds.; Springer Handbook of Auditory Research; Springer: New York, NY, USA, 2018; Volume 66. [Google Scholar] [CrossRef]
- Thomsen, F.; Mendes, S.; Bertucci, F.; Breitzke, M.; Ciappi, E.; Cresci, A.; Debusschere, E.; Ducatel, C.; Folegot, F.; Juretzek, C.; et al. Addressing underwater noise in Europe: Current state of knowledge and future priorities. In Future Science Brief 7; Kellett, P., van den Brand, R., Alexander, B., Muniz Piniella, A., Rodriguez Perez, A., van Elslander, J., Heymans, J.J., Eds.; European Marine Board: Ostend, Belgium, 2021; ISSN 2593-5232. ISBN 9789464206104. [Google Scholar] [CrossRef]
- Chen, E.Y.-S. Often Overlooked: Understanding and Meeting the Current Challenges of Marine Invertebrate Conservation. Front. Mar. Sci. 2021, 8, 1161. [Google Scholar] [CrossRef]
- Pourmozaffar, S.; Lazarjani, S.A.; Rameshi, H.; Behzadi, S.; Bagheri, T.; Zahedi, M.R.; Sadeghi, A.; Gozari, M.; Jahromi, S.T. The role of salinity in physiological responses of bivalves. Rev. Aquac. 2019, 12, 1548–1566. [Google Scholar] [CrossRef]
- Liu, Z.; Yi, Q.; Song, L.; Li, M.; Wang, L. The Neuroendocrine-Immune Regulation in Response to Environmental Stress in Marine Bivalves. Front. Physiol. 2018, 9, 1456. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.; Cheesman, S.; Breithaupt, T.; Elliott, M. Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Mar. Ecol. Prog. Ser. 2015, 538, 185–195. [Google Scholar] [CrossRef]
- Baltzer, J.; Maurer, N.; Schaffeld, T.; Ruser, A.; Schnitzler, J.G.; Siebert, U. Effect ranges of underwater noise from anchor vibration operations in the Wadden Sea. J. Sea Res. 2020, 162, 101912. [Google Scholar] [CrossRef]
- Wale, M.A.; Briers, R.A.; Hartl, M.G.; Bryson, D.; Diele, K. From DNA to ecological performance: Effects of anthropogenic noise on a reef-building mussel. Sci. Total Environ. 2019, 689, 126–132. [Google Scholar] [CrossRef]
- Hubert, J.; Booms, E.; Witbaard, R.; Slabbekoorn, H. Responsiveness and habituation to repeated sound exposures and pulse trains in blue mussels. J. Exp. Mar. Biol. Ecol. 2022, 547, 151668. [Google Scholar] [CrossRef]
- Hubert, J.; Moens, R.; Witbaard, R.; Slabbekoorn, H. Acoustic disturbance in blue mussels: Sound-induced valve closure varies with pulse train speed but does not affect phytoplankton clearance rate. ICES J. Mar. Sci. 2022, 79, 2540–2551. [Google Scholar] [CrossRef]
- Vazzana, M.; Celi, M.; Maricchiolo, G.; Genovese, L.; Corrias, V.; Quinci, E.M.; de Vincenzi, G.; Maccarrone, V.; Cammilleri, G.; Mazzola, S.; et al. Are mussels able to distinguish underwater sounds? Assessment of the reactions of Mytilus galloprovincialis after exposure to lab-generated acoustic signals. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 201, 61–70. [Google Scholar] [CrossRef]
- Torres-Guijarro, S.; Estevez-Marquez, P.; Babarro, J.M.; Silva-Caride, E.; Santos-Dominguez, D.; Comeau, L.A.; Gilcoto, M. Laboratory measurement of the effect of exposure to ship noise on mussels. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference, Nantes, France, 25–29 August 2024. [Google Scholar] [CrossRef]
- Peng, C.; Zhao, X.; Liu, S.; Shi, W.; Han, Y.; Guo, C.; Jiang, J.; Wan, H.; Shen, T.; Liu, G. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+ ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta. Sci. Rep. 2016, 6, 24266. [Google Scholar] [CrossRef] [PubMed]
- Júnior, U.G.D.M.; Xavier, F.C.; Campbell, D.; Silveira, N.; Versiani, L.; Cumplido, R.; Rodrigues, M.; Netto, E.B.F. Characterization of the acoustic activity of Perna perna (Bivalve mollusc) under laboratory conditions. In Proceedings of the 5th International Conference on the Effects of Noise on Aquatic Life, Den Haag, The Netherlands, 7–12 July 2019. [Google Scholar] [CrossRef]
- Ledoux, T.; Clements, J.C.; Comeau, L.A.; Cervello, G.; Tremblay, R.; Olivier, F.; Chauvaud, L.; Bernier, R.Y.; Lamarre, S.G. Effects of anthropogenic sounds on the behavior and physiology of the Eastern oyster (Crassostrea virginica). Front. Mar. Sci. 2023, 10, 1104526. [Google Scholar] [CrossRef]
- Charifi, M.; Khalifa, R.; Giraldes, B.W.; Sow, M.; Hizam, Z.; Carrara, M.; Maneux, E.; Hamza, S.; Bassères, A.; Blanc, P.; et al. Deep behavioral impairment in the pearl oyster Pinctada radiata exposed to anthropogenic noise and light stress. Front. Mar. Sci. 2023, 10, 1251011. [Google Scholar] [CrossRef]
- Andrade, H.; Massabuau, J.-C.; Cochrane, S.; Ciret, P.; Tran, D.; Sow, M.; Camus, L. High Frequency Non-invasive (HFNI) Bio-Sensors As a Potential Tool for Marine Monitoring and Assessments. Front. Mar. Sci. 2016, 3, 187. [Google Scholar] [CrossRef]
- ISO 18405:2017; Underwater Acoustics—Terminology, International Organization for Standardization. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/62406.html (accessed on 20 May 2025).
- Solé, M.; Kaifu, K.; Mooney, T.A.; Nedelec, S.L.; Olivier, F.; Radford, A.N.; Vazzana, M.; Wale, M.A.; Semmens, J.M.; Simpson, S.D.; et al. Marine invertebrates and noise. Front. Mar. Sci. 2023, 10, 1129057. [Google Scholar] [CrossRef]
- Zhadan, P.M. Directional sensitivity of the Japanese scallop Mizuhopecten yessoensis and Swift scallop Chlamys swifti to water-borne vibrations. Russ. J. Mar. Biol. 2005, 31, 28–35. [Google Scholar] [CrossRef]
- Santos-Domínguez, D. Metodologías de Mapeo de Ruido Submarino en Aguas Someras. Ph.D. Thesis, Universidade de Vigo, Vigo, Spain, 2020. Available online: https://www.investigo.biblioteca.uvigo.es/xmlui/handle/11093/1555 (accessed on 20 May 2025).
- Nedelec, S.L.; Ainslie, M.A.; Andersson, M.H.; Cheong, S.H.; Halvorsen, M.B.; Linné, M.; Martin, B.; Nöjd, A.; Robinson, S.; Simpson, S.D. Best Practice Guide for Underwater Particle Motion Measurement for Biological Applications; University of Exeter for the IOGP Marine Sound and Life Joint Industry Programme: Exeter, UK, 2021. [Google Scholar] [CrossRef]
- Schnitzler, J.G.; Aguilar de Soto, N.; André, M.; van Benda-Beckmann, S.; Caro, P.P.; Findlay, C.R.; Frankish, C.K.; Johnson, M.; DE Jong, C.; Madsen, P.T.; et al. How SATURN is studying the impact of ship noise on the behaviour, health, energetics, and populations of aquatic organisms. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference, Nantes, France, 25–29 August 2024. [Google Scholar] [CrossRef]
- Comeau, L.A.; Babarro, J.M.; Longa, A.; Padin, X.A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa, Spain. Aquac. Rep. 2018, 9, 68–73. [Google Scholar] [CrossRef]
- Comeau, L.A.; Babarro, J.M.; Riobó, P.; Scarratt, M.; Starr, M.; Tremblay, R. PSP-producing dinoflagellate Alexandrium minutum induces valve microclosures in the mussel Mytilus galloprovincialis. Aquaculture 2019, 500, 407–413. [Google Scholar] [CrossRef]
- Babarro, J.M.; Filgueira, R.; Padín, X.A.; Longa Portabales, M.A. A novel index of the performance of Mytilus galloprovincialis to improve commercial exploitation in aquaculture. Front. Mar. Sci. 2020, 7, 719. [Google Scholar] [CrossRef]
- Gil Coto, M.; Redondo Caride, W.; Silva Caride, E.; Velo Lanchas, A.; Comeau, L.A.; Filgueira, R.; Fernández Babarro, J.M. Arduino controlled valvometry equipment for mussel raft monitoring. In Proceedings of the 10th International Workshop on Marine Technology (MARTECH), Castellón de la Plana, Spain, 19–20 June 2023; Available online: http://hdl.handle.net/2117/391983 (accessed on 20 May 2025).
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H.; Tolstoy, A. Computational Ocean Acoustics, 1st ed.; Springer: New York, NY, USA, 2000; p. 38. [Google Scholar]
- Popper, A.N.; Hawkins, A.D. The importance of particle motion to fishes and invertebrates. J. Acoust. Soc. Am. 2018, 143, 470–488. [Google Scholar] [CrossRef]
- Nedelec, S.L.; Campbell, J.; Radford, A.N.; Simpson, S.D.; Merchant, N.D. Particle motion: The missing link in underwater acoustic ecology. Methods Ecol. Evol. 2016, 7, 836–842. [Google Scholar] [CrossRef]
Raft ID (Nearest Locality) | Location | Channel Depth (m) |
---|---|---|
VIL (Vilagarcía) | 42.6004 N, 8.8270 W | 20 |
AGU (Aguiño) | 42.5184 N, 8.9928 W | 45 |
LDopen, accel | LDopen, press | LDopen, temp | LDopen, raftaccel | |
---|---|---|---|---|
Example 1 | −0.59 | −0.59 | 0.55 | −0.22 |
Example 2 | −0.27 | −0.26 | 0.06 | 0.56 |
Example 3 | −0.50 | −0.50 | −0.47 | 0.26 |
Example 4 | −0.64 | −0.64 | −0.52 | −0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Guijarro, S.; Santos-Domínguez, D.; Babarro, J.M.F.; García Peteiro, L.; Gilcoto, M. At-Sea Measurement of the Effect of Ship Noise on Mussel Behaviour. Sensors 2025, 25, 3914. https://doi.org/10.3390/s25133914
Torres-Guijarro S, Santos-Domínguez D, Babarro JMF, García Peteiro L, Gilcoto M. At-Sea Measurement of the Effect of Ship Noise on Mussel Behaviour. Sensors. 2025; 25(13):3914. https://doi.org/10.3390/s25133914
Chicago/Turabian StyleTorres-Guijarro, Soledad, David Santos-Domínguez, Jose M. F. Babarro, Laura García Peteiro, and Miguel Gilcoto. 2025. "At-Sea Measurement of the Effect of Ship Noise on Mussel Behaviour" Sensors 25, no. 13: 3914. https://doi.org/10.3390/s25133914
APA StyleTorres-Guijarro, S., Santos-Domínguez, D., Babarro, J. M. F., García Peteiro, L., & Gilcoto, M. (2025). At-Sea Measurement of the Effect of Ship Noise on Mussel Behaviour. Sensors, 25(13), 3914. https://doi.org/10.3390/s25133914