A Long-Time Series Forecast Method for Wind Turbine Blade Strain with Incremental Bi-LSTM Learning
Abstract
1. Introduction
2. Theoretical Background
2.1. Problem Statement
2.2. Bi-LSTM Networks
2.3. Incremental Learning
3. Proposed Incremental Health Status Forecast Method
3.1. Overall Architecture of Method
3.2. Incremental Learning Based on Experience Replay
3.3. Parameters Regularization via Elastic Weight Consolidation
4. Experiments and Data Analysis
4.1. Load Scheme Design
4.2. Data Acquisition
4.3. Signal Preprocessing and Analysis
5. Results and Discussions
5.1. Forecast Results Analysis
5.2. Comparative Analysis
5.3. Ablation Analysis
5.4. Discussion of the Experiment Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, J.; Li, M.; Chen, H.; He, T.; Zhang, F. Progress and challenges on blade load research of large-scale wind turbines. Renew. Energy 2022, 196, 482–496. [Google Scholar] [CrossRef]
- Miao, H.; Xu, H.; Huang, G.; Yang, K. Evaluation and future projections of wind energy resources over the Northern Hemisphere in CMIP5 and CMIP6 models. Renew. Energy 2023, 211, 809–821. [Google Scholar] [CrossRef]
- Song, M.; Moaveni, B.; Ebrahimian, H.; Hines, E.; Bajric, A. Joint parameter-input estimation for digital twinning of the Block Island wind turbine using output-only measurements. Mech. Syst. Signal Process. 2023, 198, 110425. [Google Scholar] [CrossRef]
- Sun, R.; Guan, L.; Diao, N. rlaNet: A Residual Convolution Nested Long-Short-Term Memory Model with an Attention Mechanism for Wind Turbine Fault Diagnosis. Mathematics 2024, 12, 3460. [Google Scholar] [CrossRef]
- Jaramillo, F.; Gutiérrez, J.; Orchard, M.; Guarini, M.; Astroza, R. A Bayesian approach for fatigue damage diagnosis and prognosis of wind turbine blades. Mech. Syst. Signal Process. 2022, 174, 109067. [Google Scholar] [CrossRef]
- Wen, B.; Li, Z.; Jiang, Z.; Tian, X.; Dong, X.; Peng, Z. Blade loading performance of a floating wind turbine in wave basin model tests. Ocean Eng. 2020, 199, 107061. [Google Scholar] [CrossRef]
- Chen, X.; Yan, R.; Liu, Y. Wind turbine condition monitoring and fault diagnosis in China. IEEE Instrum. Meas. Mag. 2016, 19, 22–28. [Google Scholar] [CrossRef]
- Artigao, E.; Martín-Martínez, S.; Honrubia-Escribano, A.; Gómez-Lázaro, E. Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Appl. Energy 2018, 228, 1569–1583. [Google Scholar] [CrossRef]
- Meng, H.; Lien, F.; Glinka, G.; et al. Study on fatigue life of bend-twist coupling wind turbine blade based on anisotropic beam model and stress-based fatigue analysis method. Compos. Struct. 2018, 208, 678–701. [Google Scholar] [CrossRef]
- Caous, D.; Bois, C.; Wahl, J.C.; Palin-Luc, T.; Valette, J. Toward composite wind turbine blade fatigue life assessment using ply scale damage mod-el. Procedia Eng. 2018, 213, 173–182. [Google Scholar] [CrossRef]
- Li, M.; Gao, J.; Zhou, J. A Combined High and Low Cycle Fatigue Life Prediction Model for Wind Turbine Blades. Appl. Sci. 2025, 15, 1173. [Google Scholar] [CrossRef]
- Lu, Q.; Ye, W.; Yin, L. ResDenIncepNet-CBAM with principal component analysis for wind turbine blade cracking fault prediction with only short time scale SCADA data. Measurement 2023, 212, 112696. [Google Scholar] [CrossRef]
- Chrétien, A.; Tahan, A.; Pelletier, F. Wind Turbine Blade Damage Evaluation under Multiple Operating Conditions and Based on 10-Min SCADA Data. Energies 2024, 17, 1202. [Google Scholar] [CrossRef]
- Qin, Z.; Qiang, S.; Zhang, M.; Rong, X.; Liao, C.; Wang, J.; Xu, J. Design and structural responses of a 38-meter sectional wind turbine blade under extreme static loads. Compos. Struct. 2022, 290, 115487. [Google Scholar] [CrossRef]
- Sierra-Pérez, J.; Torres-Arredondo, M.; Güemes, A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison. Compos. Struct. 2016, 135, 156–166. [Google Scholar] [CrossRef]
- Wang, B.; Sun, W.; Wang, H.; Wan, Y.; Xu, T. Location determination of impact on the wind turbine blade surface based on the FBG and the Time Difference. Sensors 2021, 21, 232. [Google Scholar] [CrossRef]
- Deng, W.; Liu, L.; Dai, Y.; Wu, H.; Yuan, Z. A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques. Energy 2024, 304, 132211. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Jia, H.; Li, Q.; Liu, Y.; Leng, J. A novel method to predict the stiffness evolution of in-service wind turbine blades based on deep learning models. Compos. Struct. 2020, 252, 112702. [Google Scholar] [CrossRef]
- Do-Eun, C.; Hyoung-Chul, K.; Moo-Hyun, K. Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades. Renew. Energy 2021, 174, 218–235. [Google Scholar]
- Weigend, A.S.; Huberman, B.A.; Rumelhart, D.E. Predicting the Future: A Connectionist Approach. Int. J. Neural Syst. 1990, 1, 193–209. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, S.; Meng, D.; Hu, C.; Wu, C.; Yang, B.; Nie, P.; Si, Y.; Su, X. Optimization of Analog Circuit Parameters Using Bidirectional Long Short-Term Memory Coupled with an Enhanced Whale Optimization Algorithm. Mathematics 2025, 13, 121. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, Y.; Zhang, L.; Yao, L.; Guo, X. Prediction of corrosion fatigue crack growth rate in aluminum alloys based on incremental learning strategy. Int. J. Fatigue 2024, 187, 14. [Google Scholar] [CrossRef]
- Alaeiyan, H.; Mosavi, M.; Ayatollahi, A. Improving the performance of GPS/INS integration during GPS outage with incremental regularized LSTM learning. Alex. Eng. J. 2024, 105, 137–155. [Google Scholar] [CrossRef]
- Shi, K.; Zhao, X.; Xu, J. Research on fatigue test of large horizontal axis wind turbine blade. Acta Energiae Sin. 2011, 32, 1264–1268. (In Chinese) [Google Scholar]
- Buzzega, P.; Boschini, M.; Porrello, A.; Abati, D.; Calderara, S. Dark experience for general continual learning: A strong, simple baseline. Adv. Neural Inf. Process. Syst. 2020, 33, 15920–15930. [Google Scholar]
- Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Natl. Acad. Sci. 2017, 114, 3521–3526. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y.; Yu, L.; Wei, X.; Liu, W.; Huang, X. Structural collapse characteristics of a 48.8 m wind turbine blade under ultimate bending loading. Eng. Fail. Anal. 2019, 106, 104150. [Google Scholar] [CrossRef]
- García, D.; Tcherniak, D. An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator. Mech. Syst. Signal Process. 2019, 127, 102–119. [Google Scholar] [CrossRef]
- Wang, B.; Sun, W.; Wang, H.; Xu, T.; Zou, Y. Research on rapid calculation method of wind turbine blade strain for digital twin. Renew. Energy 2024, 221, 119783. [Google Scholar] [CrossRef]
Wire Grid Size (mm) | Substrate Size (mm) | Resistance (Ω) | Strain Limit | Sensitivity Coefficient |
---|---|---|---|---|
2.0 × 1.0 | 3.6 × 3.1 | 350 ± 0.1 | 2% | 2.0 ± 1% |
Window Length | 50 | 100 | 200 | 300 |
---|---|---|---|---|
R2 | 0.897 | 0.929 | 0.902 | 0.838 |
Bi-LSTM | Transformer | Incremental Forecast | |
---|---|---|---|
Inference time | 4 ms | 15 ms | 4 ms |
Memory usage | 3.2 G | 14.9 G | 5.2 G |
0.4R | 0.5R | 0.5R | Mean | |
---|---|---|---|---|
Preprocessed | 0.927 | 0.929 | 0.931 | 0.929 |
Original | 0.896 | 0.901 | 0.903 | 0.900 |
Indicators | Dataset | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 |
---|---|---|---|---|---|
MAPE | 0.4R | 5.36% | 6.08% | 6.38% | 7.10% |
0.5R | 4.56% | 4.76% | 5.34% | 6.12% | |
0.6R | 4.77% | 5.32% | 5.96% | 6.61% | |
MAE | 0.4R | 2.15 × 10−5 | 2.55 × 10−5 | 2.58 × 10−5 | 2.89 × 10−5 |
0.5R | 1.77 × 10−5 | 1.87 × 10−5 | 2.11 × 10−5 | 2.45 × 10−5 | |
0.6R | 1.86 × 10−5 | 2.17 × 10−5 | 2.39 × 10−5 | 2.67 × 10−5 | |
RMSE | 0.4R | 3.13 × 10−5 | 3.56 × 10−5 | 3.77 × 10−5 | 4.18 × 10−5 |
0.5R | 2.57 × 10−5 | 2.72 × 10−5 | 3.05 × 10−5 | 3.57 × 10−5 | |
0.6R | 2.73 × 10−5 | 3.13 × 10−5 | 3.38 × 10−5 | 3.83 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Sun, W.; Wang, H. A Long-Time Series Forecast Method for Wind Turbine Blade Strain with Incremental Bi-LSTM Learning. Sensors 2025, 25, 3898. https://doi.org/10.3390/s25133898
Wang B, Sun W, Wang H. A Long-Time Series Forecast Method for Wind Turbine Blade Strain with Incremental Bi-LSTM Learning. Sensors. 2025; 25(13):3898. https://doi.org/10.3390/s25133898
Chicago/Turabian StyleWang, Bingkai, Wenlei Sun, and Hongwei Wang. 2025. "A Long-Time Series Forecast Method for Wind Turbine Blade Strain with Incremental Bi-LSTM Learning" Sensors 25, no. 13: 3898. https://doi.org/10.3390/s25133898
APA StyleWang, B., Sun, W., & Wang, H. (2025). A Long-Time Series Forecast Method for Wind Turbine Blade Strain with Incremental Bi-LSTM Learning. Sensors, 25(13), 3898. https://doi.org/10.3390/s25133898