TableBorderNet: A Table Border Extraction Network Considering Topological Regularity
Abstract
1. Introduction
2. Related Work
3. Methodology
3.1. SelfSynth Training
- Random Point Selection: For each table image, first locate all the non-background (characters, box lines) pixels that are manually annotated with or without the help of edge detection. A certain number of pixels are then randomly selected from them to serve as the initial erasure seed points.
- Random Region Size: For each erasure seed point, we randomly assign a side length within certain range (e.g., from 12 to 24 pixels) formulating the rectangular region to be erased, which is centered on the seed point.
- Random Pixel Erase: for each region to be erased, we generate a random number for each non-background pixel within the region. By setting a threshold of 0.2, pixels with random numbers greater than the threshold are erased with Gaussian smoothing.
3.2. TableBorderNet Architecture
3.2.1. Encoder: Multi-Scale Feature Extraction
3.2.2. Decoder: Spatial Resolution Reconstruction and Topology Completion
3.2.3. SliceConv Enhancement
3.3. Topology-Aware Loss Function
4. Experiments
4.1. Dataset and Self-Supervised Training Strategy
4.2. Evaluation Metrics
4.2.1. Geometric Detail Metrics
4.2.2. Topological Structure Metrics
4.3. Results
4.3.1. Table Border Extraction and Completion
- (1)
- Overall Table Border Extraction
- (2)
- Detailed Table Border Extraction and Completion
- (3)
- Fuzzy Table Border Extraction and Completion
- (4)
- Character-Adjoined Table Border Extraction and Completion
4.3.2. Effectiveness of Topology Loss
5. Conclusions and Future Work
- (1)
- Efficiency Optimization: Refining the topology feature enhancement module using lightweight architectures (e.g., MobileNet) to reduce computational overhead while maintaining accuracy.
- (2)
- Robustness Improvement: Employing generative adversarial networks (GANs) to simulate diverse real-world degradation patterns, improving adaptability to severe damage and organic variability.
- (3)
- Generalization Expansion: Integrating multimodal learning (text, borders, semantics) via transfer learning to handle non-standard tables (e.g., nested or handwritten layouts), broadening applicability across domains like finance and healthcare.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OCR | Optical Character Recognition |
TE | Topological Error |
IoU | Intersection over Union |
R-CNN | Region-based Convolutional Neural Networks |
FCN | Fully Convolutional Networks |
References
- Chen, H.; Zhu, Y.; Luo, X. TableGraph: An Image Segmentation–Based Table Knowledge Interpretation Model for Civil and Construction Inspection Documentation. J. Constr. Eng. Manag. 2022, 148, 04022103. [Google Scholar] [CrossRef]
- Ali, B.; Khusro, S. A Divide-and-Merge Approach for Deep Segmentation of Document Tables. In Proceedings of the 10th International Conference on Informatics and Systems, Giza, Egypt, 9–11 May 2016. [Google Scholar]
- Luo, D.; Peng, J.; Fu, Y. Biotable: A tool to extract semantic structure of table in biology literature. In Proceedings of the 5th International Conference on Bioinformatics Research and Applications, Hong Kong, 27–29 December 2018. [Google Scholar]
- Hasan, F.; Kashevnik, A. Intelligent Frame and Table Segmentation in Blueprint Documents: Method and Implementation. In Proceedings of the Computational Methods in Systems and Software, Online, 10–15 October 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 837–845. [Google Scholar]
- Zou, Y.; Ma, J. A deep semantic segmentation model for image-based table structure recognition. In Proceedings of the 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 6–9 December 2020; Volume 1. [Google Scholar]
- Wang, H.; Xue, Y.; Zhang, J.; Jin, L. Scene table structure recognition with segmentation collaboration and alignment. Pattern Recognit. Lett. 2022, 165, 146–153. [Google Scholar] [CrossRef]
- Ballard, D. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122. [Google Scholar] [CrossRef]
- Ma, C.; Lin, W.; Sun, L.; Huo, Q. Robust Table Detection and Structure Recognition from Heterogeneous Document Images. Pattern Recognit. 2022, 133, 109006. [Google Scholar] [CrossRef]
- Hashmi, K.A.; Stricker, D.; Liwicki, M.; Afzal, M.Z. Guided Table Structure Recognition Through Anchor Optimization. IEEE Access 2021, 9, 113521–113534. [Google Scholar] [CrossRef]
- Raja, S.; Mondal, A.; Jawahar, C.V. Table structure recognition using top-down and bottom-up cues. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Part XXVIII 16. Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Siddiqui, S.A.; Fateh, I.A.; Rizvi, S.T.R.; Dengel, A.; Ahmed, S. Deeptabstr: Deep learning based table structure recognition. In Proceedings of the IEEE 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019. [Google Scholar]
- Xue, W.; Li, Q.; Tao, D. Res2tim: Reconstruct syntactic structures from table images. In Proceedings of the IEEE 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019. [Google Scholar]
- Siddiqui, S.A.; Khan, P.I.; Dengel, A.; Ahmed, S. Rethinking semantic segmentation for table structure recognition in documents. In Proceedings of the IEEE 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019. [Google Scholar]
- Long, R.; Wang, W.; Xue, N.; Gao, F.; Yang, Z.; Wang, Y.; Xia, G.-S. Parsing table structures in the wild. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Koci, E.; Thiele, M.; Romero, O.; Lehner, W. A genetic-based search for adaptive table recognition in spreadsheets. In Proceedings of the IEEE 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019. [Google Scholar]
- Tensmeyer, C.; Morariu, V.I.; Price, B.L.; Cohen, S.D.; Martinez, T.R. Deep splitting and merging for table structure decomposition. In Proceedings of the IEEE 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019. [Google Scholar]
- Déjean, H.; Meunier, J.-L. Table rows segmentation. In Proceedings of the IEEE 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019. [Google Scholar]
- Khan, S.A.; Khalid, S.M.D.; Shahzad, M.A.; Shafait, F. Table structure extraction with bi-directional gated recurrent unit networks. In Proceedings of the IEEE 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019. [Google Scholar]
- Qiao, L.; Li, Z.; Cheng, Z.; Zhang, P.; Pu, S.; Niu, Y.; Ren, W.; Tan, W.; Wu, F. Lgpma: Complicated table structure recognition with local and global pyramid mask alignment. In Proceedings of the International Conference on Document Analysis and Recognition, Lausanne, Switzerland, 5–10 September 2021; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Paliwal, S.S.; D, V.; Rahul, R.; Sharma, M.; Vig, L. Tablenet: Deep learning model for end-to-end table detection and tabular data extraction from scanned document images. In Proceedings of the IEEE 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.-D. TableSegNet: A fully convolutional network for table detection and segmentation in document images. Int. J. Doc. Anal. Recognit. (IJDAR) 2021, 25, 1–14. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, Y.; Ma, C.; Zhao, Y.; Zhou, Y.; Zong, C. TableRocket: An Efficient and Effective Framework for Table Reconstruction. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Urumqi, China, 18–20 October 2024; Springer Nature: Singapore, 2024. [Google Scholar]
- Wang, J.; Song, L.; Li, Z.; Sun, H.; Sun, J.; Zheng, N. End-to-end object detection with fully convolutional network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Sasaki, K.; Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Joint gap detection and inpainting of line drawings. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Lei, M.; Wu, H.; Lv, X.; Wang, X. ConDSeg: A General Medical Image Segmentation Framework via Contrast-Driven Feature Enhancement. Proc. AAAI Conf. Artif. Intell. 2025, 39, 4571–4579. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
Model | Precision | Recall | F1 | IoU |
---|---|---|---|---|
LDCNet [27] | 0.962 | 0.971 | 0.966 | 0.935 |
ConDSeg [28] | 0.974 | 0.846 | 0.905 | 0.827 |
Unet [29] | 0.961 | 0.882 | 0.920 | 0.852 |
Deeplab v3+ [30] | 0.999 | 0.871 | 0.931 | 0.870 |
TableBorderNet (ours) | 0.961 | 0.979 | 0.970 | 0.942 |
Model | Loss | TE |
---|---|---|
TableBorderNet | BCE Loss | 1.548% |
TableBorderNet | BCE Loss+Topology Loss | 1.070% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhou, S.; Li, X.; Huang, Y.; Jiang, H. TableBorderNet: A Table Border Extraction Network Considering Topological Regularity. Sensors 2025, 25, 3899. https://doi.org/10.3390/s25133899
Yang J, Zhou S, Li X, Huang Y, Jiang H. TableBorderNet: A Table Border Extraction Network Considering Topological Regularity. Sensors. 2025; 25(13):3899. https://doi.org/10.3390/s25133899
Chicago/Turabian StyleYang, Jing, Shengqiang Zhou, Xialing Li, Yuchun Huang, and Honglin Jiang. 2025. "TableBorderNet: A Table Border Extraction Network Considering Topological Regularity" Sensors 25, no. 13: 3899. https://doi.org/10.3390/s25133899
APA StyleYang, J., Zhou, S., Li, X., Huang, Y., & Jiang, H. (2025). TableBorderNet: A Table Border Extraction Network Considering Topological Regularity. Sensors, 25(13), 3899. https://doi.org/10.3390/s25133899