Carbon Nanotube Elastic Fabric Motion Tape Sensors for Low Back Movement Characterization
Abstract
:1. Introduction
2. Methods
2.1. Motion Tape Fabrication
2.2. Tensile Loading Experimental Design
2.3. Human Movement Pattern Experimental Design
2.4. Participants Recruitment
3. Results
3.1. Strain Response Characterization
3.2. Nonlinear Fit Modeling
3.3. Human Lower Back Movement Measurment Comparison of GNS-MT vs. MWCNT-MT
4. Discussion
4.1. MWCNT-MT Sensor Characterization
4.2. Human Movement Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, Y.B. The Role of Interparticle Contact in Conductive Properties of Random Particulate Materials. Acta Mater. 2008, 56, 2810–2818. [Google Scholar] [CrossRef]
- Knite, M.; Teteris, V.; Kiploka, A.; Kaupuzs, J. Polyisoprene-Carbon Black Nanocomposites as Tensile Strain and Pressure Sensor Materials. Sens. Actuators Phys. 2004, 110, 142–149. [Google Scholar] [CrossRef]
- Li, Q.W.; Li, Y.; Zhang, X.F.; Chikkannanavar, S.B.; Zhao, Y.H.; Dangelewicz, A.M.; Zheng, L.X.; Doorn, S.K.; Jia, Q.X.; Peterson, D.E.; et al. Structure-Dependent Electrical Properties of Carbon Nanotube Fibers. Adv. Mater. 2007, 19, 3358–3363. [Google Scholar] [CrossRef]
- Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Tunneling Effect in a Polymer/Carbon Nanotube Nanocomposite Strain Sensor. Acta Mater. 2008, 56, 2929–2936. [Google Scholar] [CrossRef]
- Dharap, P.; Li, Z.; Nagarajaiah, S.; Barrera, E.V. Nanotube Film Based on Single-Wall Carbon Nanotubes for Strain Sensing. Nanotechnology 2004, 15, 379–382. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Critello, C.D.; Pullano, S.A. Theory, Technology and Applications of Piezoresistive Sensors: A Review. Sens. Actuators Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Nag, A.; Alahi, M.E.E.; Mukhopadhyay, S.C.; Liu, Z. Multi-Walled Carbon Nanotubes-Based Sensors for Strain Sensing Applications. Sensors 2021, 21, 1261. [Google Scholar] [CrossRef]
- Herrmann, J.; Müller, K.-H.; Reda, T.; Baxter, G.R.; Raguse, B.; De Groot, G.J.J.B.; Chai, R.; Roberts, M.; Wieczorek, L. Nanoparticle Films as Sensitive Strain Gauges. Appl. Phys. Lett. 2007, 91, 183105. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, L.; Zhao, D.; Duan, Q.; Ji, J.; Jian, A.; Zhang, W.; Sang, S. Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs. Nanomaterials 2017, 7, 424. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, Y.; Wang, L.; Park, Y.; Yeh, Y.; Chiang, W.; Loh, K.J. Graphene K-Tape Meshes for Densely Distributed Human Motion Monitoring. Adv. Mater. Technol. 2021, 6, 2000861. [Google Scholar] [CrossRef]
- Han, Y.; Tao, Q.; Zhang, X. Multijoint Continuous Motion Estimation for Human Lower Limb Based on Surface Electromyography. Sensors 2025, 25, 719. [Google Scholar] [CrossRef]
- Martins, J.; Cerqueira, S.M.; Catarino, A.W.; Da Silva, A.F.; Rocha, A.M.; Vale, J.; Ângelo, M.; Santos, C.P. Integrating sEMG and IMU Sensors in an E-Textile Smart Vest for Forward Posture Monitoring: First Steps. Sensors 2024, 24, 4717. [Google Scholar] [CrossRef]
- Suzuki, K.; Yataka, K.; Okumiya, Y.; Sakakibara, S.; Sako, K.; Mimura, H.; Inoue, Y. Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sens. 2016, 1, 817–825. [Google Scholar] [CrossRef]
- Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K. A Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection. Nat. Nanotechnol. 2011, 6, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, J.; Jo, E.; Sim, S.; Kim, J. Patterned Carbon Nanotube Bundles as Stretchable Strain Sensors for Human Motion Detection. ACS Appl. Nano Mater. 2020, 3, 11408–11415. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B.C.; Ryu, S.; Park, I. A Stretchable Strain Sensor Based on a Metal Nanoparticle Thin Film for Human Motion Detection. Nanoscale 2014, 6, 11932–11939. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pu, X.; Xu, X.; Shi, M.; Li, H.-J.; Wang, D. PET/ZnO@MXene-Based Flexible Fabrics with Dual Piezoelectric Functions of Compression and Tension. Sensors 2022, 23, 91. [Google Scholar] [CrossRef]
- Ma, L.; Lei, X.; Li, S.; Guo, S.; Yuan, J.; Li, X.; Cheng, G.J.; Liu, F. A 3D Flexible Piezoresistive Sensor Based on Surface-Filled Graphene Nanosheets Conductive Layer. Sens. Actuators Phys. 2021, 332, 113144. [Google Scholar] [CrossRef]
- Du, J.; Wang, L.; Shi, Y.; Zhang, F.; Hu, S.; Liu, P.; Li, A.; Chen, J. Optimized CNT-PDMS Flexible Composite for Attachable Health-Care Device. Sensors 2020, 20, 4523. [Google Scholar] [CrossRef]
- Wyckoff, E.; Sten, D.; Wareham, R.; Loh, K.J. Progressive and Asymmetrical Deadlift Loads Captured by Wearable Motion Tape Sensors. Sensors 2024, 24, 7700. [Google Scholar] [CrossRef]
- Lin, Y.-A.; Schraefel, M.C.; Chiang, W.-H.; Loh, K.J. Wearable Nanocomposite Kinesiology Tape for Distributed Muscle Engagement Monitoring. MRS Adv. 2021, 6, 6–13. [Google Scholar] [CrossRef]
- Lin, Y.-A.; Mhaskar, Y.; Silder, A.; Sessoms, P.H.; Fraser, J.J.; Loh, K.J. Muscle Engagement Monitoring Using Self-Adhesive Elastic Nanocomposite Fabrics. Sensors 2022, 22, 6768. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Wyckoff, E.; Farcas, E.; Godino, J.; Patrick, K.; Spiegel, S.; Yu, R.; Kumar, A.; Loh, K.J.; Gombatto, S. Preliminary Validity and Acceptability of Motion Tape for Measuring Low Back Movement: Mixed Methods Study. JMIR Rehabil. Assist. Technol. 2024, 11, e57953. [Google Scholar] [CrossRef] [PubMed]
- Gombatto, S.P.; Brock, T.; DeLork, A.; Jones, G.; Madden, E.; Rinere, C. Lumbar Spine Kinematics during Walking in People with and People without Low Back Pain. Gait Posture 2015, 42, 539–544. [Google Scholar] [CrossRef]
- Jung, D.; Han, M.; Lee, G.S. Humidity-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet. Mater. Lett. 2014, 122, 281–284. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.; Wu, K.; Han, R.; Zhou, Z.; Cui, T. Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis. Sensors 2009, 9, 1714–1721. [Google Scholar] [CrossRef]
- Lin, Y.-A.; Loh, K.J. Nanocomposite Materials-based Circuits for Automatic Temperature Compensated Skin-Strain Sensing. Smart Mater. Struct. 2025; under review. [Google Scholar]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Struct. 2006, 15, 737–748. [Google Scholar] [CrossRef]
- Alamusi; Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.; Li, J. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors 2011, 11, 10691–10723. [Google Scholar] [CrossRef]
- Park, M.; Kim, H.; Youngblood, J.P. Strain-Dependent Electrical Resistance of Multi-Walled Carbon Nanotube/Polymer Composite Films. Nanotechnology 2008, 19, 055705. [Google Scholar] [CrossRef]
Experiment Type | Material | Objective Outcome | Reference |
---|---|---|---|
Load Frame Experiment | MWCNT | Sensor consistency, strain limit, and linearity analysis | Current study (new) |
Human Subject Study 1 [N = 10] | GNS | Resistance during lower back movements, mocap correlation | Previous study [23] |
Human Subject Study 2 [N = 10] | MWCNT | Resistance during lower back movements | Current study (new) |
Strain | 1% | 2% | 3% | 4% | 5% | 6% | 7% | 8% | Mean |
---|---|---|---|---|---|---|---|---|---|
) | 0.042 | 0.074 | 0.090 | 0.074 | 0.084 | 0.094 | 0.045 | 0.090 | 0.074 |
Sensor Number | MWCNT | GNS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Signal-to-Noise Ratio | Signal-to-Noise Ratio | |||||||||
LTLB | RTLB | LROT | RROT | FBEND | LTLB | RTLB | LROT | RROT | FBEND | |
MT1 | 36.43 | 37.34 | 36.67 | 36.89 | 32.31 | 35.19 | 25.12 | 27.68 | 33.20 | 16.11 |
MT2 | 42.38 | 36.13 | 39.13 | 37.29 | 31.82 | 27.81 | 34.93 | 27.08 | 29.28 | 14.53 |
MT3 | 30.91 | 37.03 | 38.22 | 39.60 | 29.60 | 31.34 | 17.37 | 19.65 | 24.66 | 4.608 |
MT4 | 41.39 | 35.31 | 40.15 | 41.61 | 31.34 | 16.59 | 29.38 | 22.36 | 18.42 | 1.581 |
MT5 | 43.28 | 44.69 | 42.38 | 43.81 | 35.48 | 17.27 | 11.38 | 4.815 | 4.928 | −6.146 |
MT6 | 45.21 | 44.96 | 43.79 | 45.10 | 35.87 | 14.54 | 23.99 | 5.833 | 1.469 | −6.321 |
Mean | 39.93 | 39.24 | 40.06 | 40.72 | 32.74 | 23.79 | 23.70 | 17.90 | 18.66 | 4.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyckoff, E.; Gombatto, S.P.; Velazquez, Y.; Godino, J.; Patrick, K.; Farcas, E.; Loh, K.J. Carbon Nanotube Elastic Fabric Motion Tape Sensors for Low Back Movement Characterization. Sensors 2025, 25, 3768. https://doi.org/10.3390/s25123768
Wyckoff E, Gombatto SP, Velazquez Y, Godino J, Patrick K, Farcas E, Loh KJ. Carbon Nanotube Elastic Fabric Motion Tape Sensors for Low Back Movement Characterization. Sensors. 2025; 25(12):3768. https://doi.org/10.3390/s25123768
Chicago/Turabian StyleWyckoff, Elijah, Sara P. Gombatto, Yasmin Velazquez, Job Godino, Kevin Patrick, Emilia Farcas, and Kenneth J. Loh. 2025. "Carbon Nanotube Elastic Fabric Motion Tape Sensors for Low Back Movement Characterization" Sensors 25, no. 12: 3768. https://doi.org/10.3390/s25123768
APA StyleWyckoff, E., Gombatto, S. P., Velazquez, Y., Godino, J., Patrick, K., Farcas, E., & Loh, K. J. (2025). Carbon Nanotube Elastic Fabric Motion Tape Sensors for Low Back Movement Characterization. Sensors, 25(12), 3768. https://doi.org/10.3390/s25123768