Gait Metrics in Elderly Fallers and Non-Fallers with Varying Levels of Glaucoma: A Longitudinal Prospective Cohort Study
Abstract
1. Introduction
2. Methods
2.1. Study Design and Study Population
2.2. Gait Evaluation
2.3. Falls Data Collection
2.4. Visual Assessment
2.5. Evaluation of Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ronthal, M. Gait Disorders and Falls in the Elderly. Med. Clin. N. Am. 2019, 103, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Duxbury, A.S. Gait disorders and fall risk: Detection and prevention. Compr. Ther. 2000, 26, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.; van der Velde, N.; Martin, F.C.; Petrovic, M.; Tan, M.P.; Ryg, J.; Aguilar-Navarro, S.; Alexander, N.B.; Becker, C.; Blain, H.; et al. World guidelines for falls prevention and management for older adults: A global initiative. Age Ageing 2022, 51, 1501. [Google Scholar] [CrossRef]
- Hamacher, D.; Singh, N.B.; Van Dieën, J.H.; Heller, M.O.; Taylor, W.R. Kinematic measures for assessing gait stability in elderly individuals: A systematic review. J. R. Soc. Interface 2011, 8, 1682–1698. [Google Scholar] [CrossRef]
- Ramulu, P.Y.; Mihailovic, A.; West, S.K.; Friedman, D.S.; Gitlin, L.N. What Is a Falls Risk Factor? Factors Associated with Falls per Time or per Step in Individuals with Glaucoma. J. Am. Geriatr. Soc. 2019, 67, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Mihailovic, A.; De Luna, R.M.; West, S.K.; Friedman, D.S.; Gitlin, L.N.; Ramulu, P.Y. Gait and Balance as Predictors and/or Mediators of Falls in Glaucoma. Investig. Opthalmology Vis. Sci. 2020, 61, 30. [Google Scholar] [CrossRef]
- Terroso, M.; Rosa, N.; Torres Marques, A.; Simoes, R. Physical consequences of falls in the elderly: A literature review from 1995 to 2010. Eur. Rev. Aging Phys. Act. 2014, 11, 51–59. [Google Scholar] [CrossRef]
- James, S.L.; Lucchesi, L.R.; Bisignano, C.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Henry, N.J.; Krohn, K.J.; Liu, Z.; et al. The global burden of falls: Global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017. Inj. Prev. 2020, 26 (Suppl. 1), i3–i11. [Google Scholar] [CrossRef]
- Colón-Emeric, C.S.; McDermott, C.L.; Lee, D.S.; Berry, S.D. Risk Assessment and Prevention of Falls in Older Community-Dwelling Adults: A Review. JAMA 2024, 331, 1397–1406. [Google Scholar] [CrossRef]
- E, J.-Y.; Mihailovic, A.; Schrack, J.A.; Li, T.; Friedman, D.S.; West, S.K.; Gitlin, L.N.; Ramulu, P.Y. Characterizing Longitudinal Changes in Physical Activity and Fear of Falling after Falls in Glaucoma. J. Am. Geriatr. Soc. 2021, 69, 1249–1256. [Google Scholar] [CrossRef]
- E, J.-Y.; Mihailovic, A.; Kuo, P.L.; West, S.K.; Friedman, D.S.; Gitlin, L.N.; Li, T.; Schrack, J.A.; Ramulu, P.Y. Characterizing the Impact of Fear of Falling on Activity and Falls in Older Adults with Glaucoma. J. Am. Geriatr. Soc. 2020, 68, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- E, J.-Y.; Mihailovic, A.; Schrack, J.A.; Garzon, C.; Li, T.; Friedman, D.S.; West, S.K.; Gitlin, L.N.; Ramulu, P.Y. Longitudinal changes in daily patterns of objectively measured physical activity after falls in older adults with varying degrees of glaucoma. EClinicalMedicine 2021, 40, 101097. [Google Scholar] [CrossRef]
- Montero-Odasso, M.M.; Kamkar, N.; Pieruccini-Faria, F.; Osman, A.; Sarquis-Adamson, Y.; Close, J.; Hogan, D.B.; Hunter, S.W.; Kenny, R.A.; Lipsitz, L.A.; et al. Evaluation of Clinical Practice Guidelines on Fall Prevention and Management for Older Adults. JAMA Netw. Open 2021, 4, e2138911. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.S.; Kwon, Y.R.; Park, Y.S.; Kim, J.W. Comparison of gait patterns in elderly fallers and non-fallers. Technol. Health Care 2018, 26, 427–436. [Google Scholar] [CrossRef]
- Toulotte, C.; Thevenon, A.; Watelain, E.; Fabre, C. Identification of healthy elderly fallers and non-fallers by gait analysis under dual-task conditions. Clin. Rehabil. 2006, 20, 269–276. [Google Scholar] [CrossRef]
- Brach, J.S.; Berlin, J.E.; VanSwearingen, J.M.; Newman, A.B.; Studenski, S.A. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J. Neuroeng. Rehabil. 2005, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Newstead, A.H.; Walden, G.J.; Gitter, A.J. Gait Variables Differentiating Fallers from Nonfallers. J. Geriatr. Phys. Ther. 2007, 30, 93–101. [Google Scholar] [CrossRef]
- da Silva, S.L.A.; Viana, J.U.; Da Silva, V.G.; Dias, J.M.D.; Pereira, L.S.M.; Dias, R.C. Influence of Frailty and Falls on Functional Capacity and Gait in Community-Dwelling Elderly Individuals. Top. Geriatr. Rehabil. 2012, 28, 128–134. [Google Scholar] [CrossRef]
- Mbourou, G.A.; Lajoie, Y.; Teasdale, N. Step Length Variability at Gait Initiation in Elderly Fallers and Non-Fallers, and Young Adults. Gerontology 2003, 49, 21–26. [Google Scholar] [CrossRef]
- Barak, Y.; Wagenaar, R.C.; Holt, K.G. Gait Characteristics of Elderly People with a History of Falls: A Dynamic Approach. Phys. Ther. 2006, 86, 1501–1510. [Google Scholar] [CrossRef]
- Howcroft, J.; Lemaire, E.; Kofman, J.; McIlroy, W. Dual-Task Elderly Gait of Prospective Fallers and Non-Fallers: A Wearable-Sensor Based Analysis. Sensors 2018, 18, 1275. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; Nevitt, M.C.; Kidd, S. Forgetting Falls. J. Am. Geriatr. Soc. 1988, 36, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Mihailovic, A.; Swenor, B.K.; Friedman, D.S.; West, S.K.; Gitlin, L.N.; Ramulu, P.Y. Gait Implications of Visual Field Damage from Glaucoma. Transl. Vis. Sci. Technol. 2017, 6, 23. [Google Scholar] [CrossRef]
- Ramulu, P.Y.; Mihailovic, A.; West, S.K.; Gitlin, L.N.; Friedman, D.S. Predictors of Falls per Step and Falls per Year At and Away From Home in Glaucoma. Am. J. Ophthalmol. 2019, 200, 169–178. [Google Scholar] [CrossRef]
- Cutlip, R.G.; Mancinelli, C.; Huber, F.; DiPasquale, J. Evaluation of an instrumented walkway for measurement of the kinematic parameters of gait. Gait Posture 2000, 12, 134–138. [Google Scholar] [CrossRef] [PubMed]
- McDonough, A.L.; Batavia, M.; Chen, F.C.; Kwon, S.; Ziai, J. The validity and reliability of the GAITRite system’s measurements: A preliminary evaluation. Arch. Phys. Med. Rehabil. 2001, 82, 419–425. [Google Scholar] [CrossRef]
- Bilney, B.; Morris, M.; Webster, K. Concurrent related validity of the GAITRite® walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 2003, 17, 68–74. [Google Scholar] [CrossRef]
- Webster, K.E.; Wittwer, J.E.; Feller, J.A. Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 2005, 22, 317–321. [Google Scholar] [CrossRef]
- Menz, H.B.; Latt, M.D.; Tiedemann, A.; Mun San Kwan, M.; Lord, S.R. Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture 2004, 20, 20–25. [Google Scholar] [CrossRef]
- Sterke, C.S.; van Beeck, E.F.; Looman, C.W.N.; Kressig, R.W.; van der Cammen, T.J.M. An electronic walkway can predict short-term fall risk in nursing home residents with dementia. Gait Posture 2012, 36, 95–101. [Google Scholar] [CrossRef]
- Shimada, H.; Kim, H.; Yoshida, H.; Suzukawa, M.; Makizako, H.; Yoshida, Y.; Saito, K.; Suzuki, T. Relationship between Age-Associated Changes of Gait and Falls and Life-Space in Elderly People. J. Phys. Ther. Sci. 2010, 22, 419–424. [Google Scholar] [CrossRef]
- Maki, B.E. Gait Changes in Older Adults: Predictors of Falls or Indicators of Fear? J. Am. Geriatr. Soc. 1997, 45, 313–320. [Google Scholar] [CrossRef]
- Quach, L.; Galica, A.M.; Jones, R.N.; Procter-Gray, E.; Manor, B.; Hannan, M.T.; Lipsitz, L.A. The Nonlinear Relationship Between Gait Speed and Falls: The Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly of Boston Study. J. Am. Geriatr. Soc. 2011, 59, 1069–1073. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Edelberg, H.K.; Mitchell, S.L.; Goldberger, A.L.; Wei, J.Y. Increased gait unsteadiness in community-dwelling elderly fallers. Arch. Phys. Med. Rehabil. 1997, 78, 278–283. [Google Scholar] [CrossRef]
- Carey, J.P.; Barron, J.S.; Weber, K.L.; Walston, J.D.; Zackowski, K.M.; Zee, D.S.; Ying, H.S.; Schubert, M.C.; Agrawal, Y.; Davalos-Bichara, M.; et al. Development and Validation of a Falls-Grading Scale. J. Geriatr. Phys. Ther. 2013, 36, 63–67. [Google Scholar] [CrossRef]
- Odden, J.L.; Mihailovic, A.; Boland, M.V.; Friedman, D.S.; West, S.K.; Ramulu, P.Y. Evaluation of Central and Peripheral Visual Field Concordance in Glaucoma. Investig. Opthalmology Vis. Sci. 2016, 57, 2797–2804. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, B.E.; Flom, R.E.; Bullimore, M.A. An Evaluation of the Mars Letter Contrast Sensitivity Test. Optom. Vis. Sci. 2005, 82, 970–975. [Google Scholar] [CrossRef] [PubMed]
- E, J.-Y.; Mihailovic, A.; Garzon, C.; Schrack, J.A.; Li, T.; West, S.K.; Gitlin, L.N.; Friedman, D.S.; Ramulu, P.Y. Association Between Visual Field Damage and Gait Dysfunction in Patients with Glaucoma. JAMA Ophthalmol. 2021, 139, 1053–1060. [Google Scholar] [CrossRef]
- Ganz, D.A.; Latham, N.K. Prevention of Falls in Community-Dwelling Older Adults. N. Engl. J. Med. 2020, 382, 734–743. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Plitnick, B.; Rea, M.S.; Gras, L.Z.; Rea, M.S. Lighting and perceptual cues: Effects on gait measures of older adults at high and low risk for falls. BMC Geriatr. 2011, 11, 49. [Google Scholar] [CrossRef]
- Lin, M.R.; Hwang, H.F.; Wang, Y.W.; Chang, S.H.; Wolf, S.L. Community-Based Tai Chi and Its Effect on Injurious Falls, Balance, Gait, and Fear of Falling in Older People. Phys. Ther. 2006, 86, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Pavic, A.; Goodwin, V.A. Wearable inertial sensors to measure gait and posture characteristic differences in older adult fallers and non-fallers: A scoping review. Gait Posture 2020, 76, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.; Peters, A.L.; Liu, B.A.; Maki, B.E. Effect of a Perturbation-Based Balance Training Program on Compensatory Stepping and Grasping Reactions in Older Adults: A Randomized Controlled Trial. Phys. Ther. 2010, 90, 476–491. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.H.; Lee, S.H.; Lee, C.C.; Chen, H.Y.; Lin, B.S. Long-Term Gait-Balance Monitoring Artificial Intelligence System for Various Terrain Types. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 4155–4163. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, L.; Fan, X.; Pang, M.Y.C.; Tsui, K.L.; Wang, H. Design of a Sensor-Technology-Augmented Gait and Balance Monitoring System for Community-Dwelling Older Adults in Hong Kong: A Pilot Feasibility Study. Sensors 2023, 23, 8008. [Google Scholar] [CrossRef]
Non-Faller N = 135 | Faller N = 105 | p-Value | |
---|---|---|---|
Demographics and health | |||
Age (year), mean (SD) | 69.6 (7.73) | 71.8 (7.36) | 0.03 |
Female, n (%) | 58 (43) | 57 (54) | 0.08 |
African American, n (%) | 43 (32) | 26 (25) | 0.23 |
Living alone, n (%) | 23 (17) | 24 (23) | 0.26 |
Polypharmacy, n (%) | 41 (30) | 38 (36) | 0.34 |
No. of comorbidities | |||
>1, n (%) | 81 (60) | 76 (72) | 0.05 |
Vision | |||
IVF sensitivity (dB), median (IQR) | 28.1 (26.3, 29.9) | 27.8 (25.7, 29.3) | 0.19 |
MD better eye (dB), median (IQR) | −2.4 (−4.9, −0.5) | −3.0 (−5.6, −1.0) | 0.19 |
MD worse eye (dB), median (IQR) | −6.0 (−13.6, −2.9) | −5.5 (−11.4, −2.8) | 0.64 |
VA better eye (logMAR), median (IQR) | 0.06 (0.0, 0.2) | 0.06 (−0.02, 0.14) | 0.52 |
CS both eyes (logCS), median (IQR) | 1.72 (1.60, 1.76) | 1.72 (1.64, 1.76) | 0.60 |
Gait | |||
Base of support (cm), mean (SD) | 10.02 (3.12) | 10.41 (3.13) | 0.34 |
Base of support CV (%), mean (SD) | 24.98 (12.97) | 23.77 (12.98) | 0.47 |
Stride length (cm), mean (SD) | 113.67 (16.51) | 111.61 (16.25) | 0.33 |
Stride length CV (%), mean (SD) | 4.60 (2.35) | 4.98 (3.21) | 0.30 |
Stride velocity (cm/s), mean (SD) | 101.33 (19.31) | 100.47 (17.58) | 0.72 |
Stride velocity CV (%), mean (SD) | 6.90 (3.37) | 7.29 (4.45) | 0.44 |
Cadence (steps/min), mean (SD) | 106.17 (10.43) | 107.28 (10.66) | 0.42 |
Base of Support | Stride Length | Stride Velocity | Cadence | ||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Comparator/Reference | β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI |
Fall status | |||||||||
One-time faller | Non-faller | 0.24 | (−0.06, 0.53) | −0.10 | (−0.38, 0.17) | 0.00 | (−0.30, 0.30) | 0.17 | (−0.15, 0.49) |
Multiple faller | Non-faller | −0.05 | (−0.40, 0.30) | 0.36 | (0.04, 0.69) | 0.38 | (0.03, 0.73) | 0.21 | (−0.17, 0.59) |
Visit | Per visit | 0.03 | (0, 0.07) | −0.07 ** | (−0.11, −0.04) | −0.05 | (−0.09, 0) | 0.01 | (−0.03, 0.06) |
Age | 1 year older | 0.01 | (−0.01, 0.02) | −0.04 ** | (−0.05, −0.03) | −0.04 ** | (−0.05, −0.03) | −0.02 | (−0.03, 0) |
Male | Female | 0.42 ** | (0.20, 0.65) | 0.71 ** | (0.51, 0.92) | 0.31 ** | (0.11, 0.51) | −0.40 ** | (−0.63, −0.18) |
African American | White | −0.03 | (−0.30, 0.23) | −0.31 * | (−0.55, −0.08) | −0.40 ** | (−0.64, −0.16) | −0.27 | (−0.53, 0) |
IVF | 5 dB decrement | 0.22 ** | (0.09, 0.35) | −0.16 * | (−0.28, −0.04) | −0.15 * | (−0.27, −0.03) | −0.06 | (−0.2, 0.07) |
Comorbidity (>1) | 0–1 | 0.27 * | (0.02, 0.53) | −0.32 * | (−0.55, −0.09) | −0.33 * | (−0.56, −0.10) | −0.17 | (−0.43, 0.08) |
Polypharmacy | No polypharmacy | −0.02 | (−0.29, 0.25) | −0.17 | (−0.41, 0.06) | −0.16 | (−0.40, 0.08) | −0.05 | (−0.32, 0.21) |
Fall status × Visit | |||||||||
One-time faller | Non-faller | −0.02 | (−0.08, 0.04) | 0.00 | (−0.06, 0.07) | −0.01 | (−0.09, 0.07) | −0.03 | (−0.11, 0.05) |
Multiple faller | Non-faller | −0.001 | (−0.07, 0.07) | −0.04 | (−0.11, 0.03) | −0.06 | (−0.15, 0.03) | −0.04 | (−0.13, 0.06) |
Base of Support | Stride Length | Stride Velocity | Cadence | ||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Comparator/Reference | β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI |
Fall status | |||||||||
Injurious faller | Non-injurious faller | 0.03 | (−0.28, 0.34) | 0.26 | (−0.03, 0.54) | 0.36 * | (0.06, 0.67) | 0.31 | (−0.02, 0.64) |
Visit | Per visit | 0.02 | (−0.01, 0.05) | −0.08 ** | (−0.11, −0.05) | −0.06 * | (−0.10, −0.02) | −0.01 | (−0.05, 0.03) |
Age | 1 year older | 0.01 | (−0.01, 0.02) | −0.04 ** | (−0.05, −0.03) | −0.04 ** | (−0.05, −0.03) | −0.02 * | (−0.03, −0.003) |
Male | Female | 0.41 ** | (0.18, 0.63) | 0.73 ** | (0.53, 0.93) | 0.32 ** | (0.12, 0.52) | −0.40 ** | (−0.62, −0.18) |
African American | White | −0.02 | (−0.28, 0.25) | −0.32 * | (−0.56, −0.08) | −0.39 ** | (−0.62, −0.15) | −0.24 | (−0.50, 0.02) |
IVF | 5 dB decrement | 0.22 ** | (0.09, 0.35) | −0.16 * | (−0.28, −0.04) | −0.15 * | (−0.27, −0.03) | −0.06 | (−0.19, 0.07) |
Comorbidity (>1) | 0–1 | 0.27 * | (0.01, 0.53) | −0.34 * | (−0.58, −0.11) | −0.37 ** | (−0.60, −0.14) | −0.22 | (−0.47, 0.04) |
Polypharmacy | No polypharmacy | −0.004 | (−0.27, 0.26) | −0.20 | (−0.43, 0.04) | −0.18 | (−0.41, 0.06) | −0.05 | (−0.31, 0.21) |
Fall status × Visit | |||||||||
Injurious faller | Non-injurious faller | 0.04 | (−0.03, 0.10) | −0.01 | (−0.07, 0.06) | 0.003 | (−0.08, 0.09) | 0.04 | (−0.05, 0.12) |
Base of Support | Stride Length | Stride Velocity | Cadence | ||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Comparator/Reference | β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI |
Fall status | |||||||||
Faller | Non-faller | −0.01 | (−0.08, 0.06) | −0.01 | (−0.08, 0.06) | −0.03 | (−0.12, 0.06) | −0.04 | (−0.14, 0.05) |
Age | 1 year older | 0.004 | (0, 0.01) | −0.004 | (−0.01, 0) | −0.01 | (−0.01, 0) | −0.01 * | (−0.02, −0.002) |
Male | Female | 0.03 | (−0.03, 0.10) | −0.003 | (−0.07, 0.07) | 0.02 | (−0.06, 0.11) | 0.05 | (−0.04, 0.14) |
African American | White | −0.06 | (−0.14, 0.02) | 0.02 | (−0.06, 0.11) | 0.02 | (−0.08, 0.12) | 0.003 | (−0.11, 0.11) |
IVF | 5 dB decrement | 0.02 | (−0.02, 0.06) | −0.03 | (−0.07, 0.01) | −0.05 * | (−0.11, −0.004) | −0.08 * | (−0.13, −0.02) |
Comorbidity (>1) | 0–1 | 0.06 | (−0.01, 0.14) | −0.04 | (−0.12, 0.04) | −0.05 | (−0.15, 0.05) | −0.03 | (−0.13, 0.07) |
Polypharmacy | No polypharmacy | −0.06 | (−0.14, 0.02) | 0.07 | (−0.02, 0.15) | 0.08 | (−0.02, 0.18) | 0.07 | (−0.04, 0.18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almidani, L.; Vargas, J.G.; Yuan, Z.; Banerjee, S.; Chen, X.; Diaz, M.; Miller, R.; Mihailovic, A.; Ramulu, P.Y. Gait Metrics in Elderly Fallers and Non-Fallers with Varying Levels of Glaucoma: A Longitudinal Prospective Cohort Study. Sensors 2025, 25, 3712. https://doi.org/10.3390/s25123712
Almidani L, Vargas JG, Yuan Z, Banerjee S, Chen X, Diaz M, Miller R, Mihailovic A, Ramulu PY. Gait Metrics in Elderly Fallers and Non-Fallers with Varying Levels of Glaucoma: A Longitudinal Prospective Cohort Study. Sensors. 2025; 25(12):3712. https://doi.org/10.3390/s25123712
Chicago/Turabian StyleAlmidani, Louay, José G. Vargas, Zhuochen Yuan, Seema Banerjee, Xindi Chen, Mariah Diaz, Rhonda Miller, Aleksandra Mihailovic, and Pradeep Y. Ramulu. 2025. "Gait Metrics in Elderly Fallers and Non-Fallers with Varying Levels of Glaucoma: A Longitudinal Prospective Cohort Study" Sensors 25, no. 12: 3712. https://doi.org/10.3390/s25123712
APA StyleAlmidani, L., Vargas, J. G., Yuan, Z., Banerjee, S., Chen, X., Diaz, M., Miller, R., Mihailovic, A., & Ramulu, P. Y. (2025). Gait Metrics in Elderly Fallers and Non-Fallers with Varying Levels of Glaucoma: A Longitudinal Prospective Cohort Study. Sensors, 25(12), 3712. https://doi.org/10.3390/s25123712