Transparent Al-Doped ZnO Thin Films for High-Sensitivity NO2 Gas Sensing
Abstract
Highlights
- Al-doped ZnO thin films were deposited using atomic layer deposition, with trimethylaluminum inducing oxygen vacancies via its strong reducing nature.
- The sensor achieved 66.2× higher sensitivity and a 50 °C lower operating temperature.
- Controlled introduction of oxygen vacancies enabled low-temperature, high-sensitivity NO2 detection while maintaining high optical transparency.
- The sensor is suitable for transparent, low-power environmental monitoring systems.
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Morphological Properties
3.2. XPS Analysis
3.3. Optical Properties
3.4. Gas-Sensing Properties
3.4.1. Gas-Sensing Mechanism
3.4.2. Gas-Sensing Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
MOS | Metal oxide semiconductor |
ALD | Atomic layer deposition |
TMA | Trimethylaluminum |
AZO | Al-doped ZnO |
DEZ | Diethylzinc |
TEM | Transmission electron microscopy |
SAED | Selected area electron diffraction |
EDS | Energy-dispersive X-ray spectroscopy |
FE-SEM | Field-emission scanning electron microscope |
XPS | X-ray photoelectron spectroscopy |
UV-Vis | Ultraviolet–visible spectroscopy |
FIB | Focused ion beam |
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Connor, S.T.; Cui, Y.; Peumans, P. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Lett. 2008, 8, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, F.N.; Chang, H.-K.; Ryu, K.; Chen, P.-C.; Badmaev, A.; Gomez De Arco, L.; Shen, G.; Zhou, C. Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates. ACS Nano 2009, 3, 73–79. [Google Scholar] [CrossRef]
- Zong, B.; Wu, S.; Yang, Y.; Li, Q.; Tao, T.; Mao, S. Smart Gas Sensors: Recent Developments and Future Prospective. Nanomicro Lett. 2024, 17, 54. [Google Scholar] [CrossRef]
- Hakeem Anwer, A.; Saadaoui, M.; Mohamed, A.T.; Ahmad, N.; Benamor, A. State-of-the-Art advances and challenges in wearable gas sensors for emerging applications: Innovations and future prospects. Chem. Eng. J. 2024, 502, 157899. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sens. 2016, 1, 464–482. [Google Scholar] [CrossRef]
- Tai, H.; Wang, S.; Duan, Z.; Jiang, Y. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuators B Chem. 2020, 318, 128104. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, S.J.; Jang, J.S.; Cho, H.J.; Kim, I.D. Innovative Nanosensor for Disease Diagnosis. Acc. Chem. Res. 2017, 50, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.Q.; Yao, J.D.; Wang, B.; Yang, G.W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 2015, 5, 11070. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, S.J.; Kim, Y.-J.; Shim, Y.-S.; Kim, S.Y.; Hong, B.H.; Jang, H.W. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. ACS Nano 2015, 9, 10453–10460. [Google Scholar] [CrossRef]
- Loghin, F.C.; Falco, A.; Salmeron, J.F.; Lugli, P.; Abdellah, A.; Rivadeneyra, A. Fully Transparent Gas Sensor Based on Carbon Nanotubes. Sensors 2019, 19, 4591. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.; Akbar, S.; Kumar, R.; Amu-Darko, J.N.O.; Hussain, S.; Ibrahim, A.A.; Alhamami, M.A.; Almehbad, N.; Almas, T.; Seliem, A.F. Ce-doped ZnO nanostructures: A promising platform for NO2 gas sensing. Chemosphere 2024, 349, 140838. [Google Scholar] [CrossRef] [PubMed]
- Freddi, S.; Rodriguez Gonzalez, M.C.; Casotto, A.; Sangaletti, L.; De Feyter, S. Machine-Learning-Aided NO2 Discrimination with an Array of Graphene Chemiresistors Covalently Functionalized by Diazonium Chemistry. Chemistry 2023, 29, e202302154. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Gorban, Y.M.; Averin, A.A.; Gorobtsov, P.Y.; Simonenko, N.P.; Lebedinskii, Y.Y.; Simonenko, E.P.; Kuznetsov, N.T. Obtaining of ZnO/Fe2O3 Thin Nanostructured Films by AACVD for Detection of ppb-Concentrations of NO2 as a Biomarker of Lung Infections. Biosensors 2023, 13, 445. [Google Scholar] [CrossRef]
- Brophy, R.E.; Junker, B.; Fakhri, E.A.; Árnason, H.Ö.; Svavarsson, H.G.; Weimar, U.; Bârsan, N.; Manolescu, A. Ultra Responsive NO2 silicon nanowires gas sensor. Sens. Actuators B Chem. 2024, 410, 135648. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Liu, Y.; Wang, S.; Li, T.; Feng, S.; Qin, S.; Zhang, T. Heteronanostructural metal oxide-based gas microsensors. Microsyst. Nanoeng. 2022, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef]
- Li, S.; Zhang, M.; Wang, H. Simulation of gas sensing mechanism of porous metal oxide semiconductor sensor based on finite element analysis. Sci. Rep. 2021, 11, 17158. [Google Scholar] [CrossRef]
- Kohlmann, N.; Hansen, L.; Lupan, C.; Schurmann, U.; Reimers, A.; Schutt, F.; Adelung, R.; Kersten, H.; Kienle, L. Fabrication of ZnO Nanobrushes by H2-C2H2 Plasma Etching for H2 Sensing Applications. ACS Appl. Mater. Interfaces 2021, 13, 61758–61769. [Google Scholar] [CrossRef]
- Kwak, C.-H.; Woo, H.-S.; Abdel-Hady, F.; Wazzan, A.A.; Lee, J.-H. Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sens. Actuator B Chem. 2016, 223, 527–534. [Google Scholar] [CrossRef]
- Woo, H.S.; Na, C.W.; Lee, J.H. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview. Sensors 2016, 16, 1531. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Jeon, H. Characteristics of aluminum-doped SnO2 in various positions using super-cycle ALD. Nanotechnology 2025, 36, 185701. [Google Scholar] [CrossRef] [PubMed]
- Yoo, R.; Cho, S.; Song, M.-J.; Lee, W. Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant. Sens. Actuators B Chem. 2015, 221, 217–223. [Google Scholar] [CrossRef]
- Seok, T.J.; Liu, Y.; Choi, J.H.; Kim, H.J.; Kim, D.H.; Kim, S.M.; Jang, J.H.; Cho, D.-Y.; Lee, S.W.; Park, T.J. In Situ Observation of Two-Dimensional Electron Gas Creation at the Interface of an Atomic Layer-Deposited Al2O3/TiO2 Thin-Film Heterostructure. Chem. Mater. 2020, 32, 7662–7669. [Google Scholar] [CrossRef]
- Baek, D.; Lee, S.-H.; Bak, S.-Y.; Jang, H.; Lee, J.; Yi, M. Control of Threshold Voltage in ZnO/Al2O3 Thin-Film Transistors through Al2O3 Growth Temperature. Electronics 2024, 13, 1544. [Google Scholar] [CrossRef]
- Eom, H.; Bae, W.; Sung, J.Y.; Choi, J.H.; Dae, K.S.; Jang, J.H.; Park, T.J.; Lee, S.W.; Shong, B. Formation of oxygen vacancy at surfaces of ZnO by trimethylaluminum. APL Mater. 2024, 12, 031115. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Geng, X.; Wu, K.; Debliquy, M. Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review. Sens. Actuators A Phys. 2020, 309, 112026. [Google Scholar] [CrossRef]
- Fan, Y.; Song, L.; Wang, W.; Fan, H. Nano-Micro Structure of Metal Oxide Semiconductors for Triethylamine Sensors: ZnO and In2O3. Nanomaterials 2025, 15, 427. [Google Scholar] [CrossRef]
- Gao, R.; Wang, S.; Xu, Y.; Zhang, X.; Gao, J.; Zheng, M.; Zhou, X.; Huo, L. Dual-defect enhanced NO2 sensing performance at low power consumption of ZnO-ZnTe core-shell nanorods via one-step controllable assembly. J. Alloys Compd. 2025, 1029, 180794. [Google Scholar] [CrossRef]
- Li, P.; Fan, H.; Cai, Y.; Xu, M.; Long, C.; Li, M.; Lei, S.; Zou, X. Phase transformation (cubic to rhombohedral): The effect on the NO2 sensing performance of Zn-doped flower-like In2O3 structures. RSC Adv. 2014, 4, 15161–15170. [Google Scholar] [CrossRef]
- Patil, V.L.; Dalavi, D.S.; Dhavale, S.B.; Tarwal, N.L.; Vanalakar, S.A.; Kalekar, A.S.; Kim, J.H.; Patil, P.S. NO2 gas sensing properties of chemically grown Al doped ZnO nanorods. Sens. Actuators A Phys. 2022, 340, 113546. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Li, Y.-L.; Gong, F.-L.; Xie, K.-F.; Liu, M.; Zhang, H.-L.; Fang, S.-M. Al doped narcissus-like ZnO for enhanced NO2 sensing performance: An experimental and DFT investigation. Sens. Actuators B Chem. 2020, 305, 127489. [Google Scholar] [CrossRef]
- Park, S.; Eom, T.-y.; Jeong, R.-H.; Lee, H.-J.; Boo, J.-H. Synthesis and characterization of Al-doped ZnO/CdO heterostructured nanocomposites for enhancing NO2 gas sensing performance. Appl. Surf. Sci. 2024, 657, 159746. [Google Scholar] [CrossRef]
- Maeng, W.J.; Lee, J.-w.; Lee, J.H.; Chung, K.-B.; Park, J.-S. Studies on optical, structural and electrical properties of atomic layer deposited Al-doped ZnO thin films with various Al concentrations and deposition temperatures. J. Phys. D Appl. Phys. 2011, 44, 445305. [Google Scholar] [CrossRef]
- Lee, S.B.; Park, J.; van Aken, P.A. Formation of Pt–Zn alloy nanoparticles by electron-beam irradiation of wurtzite ZnO in the TEM. Nanoscale Res. Lett. 2016, 11, 339. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, M.D.; Matthews, B.E.; Spurgeon, S.R.; Heald, S.M.; Isaacs-Smith, T.; Comes, R.B. Jahn–Teller-driven phase segregation in MnxCo3− xO4 spinel thin films. J. Vac. Sci. Technol. A 2023, 41, 052703. [Google Scholar] [CrossRef]
- Yen, C.Y.; Jian, S.R.; Chen, G.J.; Lin, C.M.; Lee, H.Y.; Ke, W.C.; Liao, Y.Y.; Yang, P.F.; Wang, C.T.; Lai, Y.S.; et al. Influence of annealing temperature on the structural, optical and mechanical properties of ALD-derived ZnO thin films. Appl. Surf. Sci. 2011, 257, 7900–7905. [Google Scholar] [CrossRef]
- Makino, H.; Kishimoto, S.; Yamada, T.; Miyake, A.; Yamamoto, N.; Yamamoto, T. Effects of surface pretreatment on growth of ZnO on glass substrate. Phys. Status Solidi 2008, 205, 1971–1974. [Google Scholar] [CrossRef]
- Moeini, B.; Avval, T.G.; Brongersma, H.H.; Prusa, S.; Babik, P.; Vanickova, E.; Strohmeier, B.R.; Bell, D.S.; Eggett, D.; George, S.M.; et al. Area-Selective Atomic Layer Deposition of ZnO on Si\SiO2 Modified with Tris(dimethylamino)methylsilane. Materials 2023, 16, 4688. [Google Scholar] [CrossRef]
- Guan, W.; Tang, N.; He, K.; Hu, X.; Li, M.; Li, K. Gas-Sensing Performances of Metal Oxide Nanostructures for Detecting Dissolved Gases: A Mini Review. Front. Chem. 2020, 8, 76. [Google Scholar] [CrossRef]
- Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuator B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Hsieh, P.T.; Chen, Y.C.; Kao, K.S.; Wang, C.M. Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A Mater. Sci. Process. 2007, 90, 317–321. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Yu, Y.; Pei, Z.; Bai, X.; Sun, C.; Huang, R.; Wen, L. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134–140. [Google Scholar] [CrossRef]
- DeAngelis, A.D.; Rougier, A.; Manaud, J.-P.; Labrugère, C.; Miller, E.L.; Gaillard, N. Temperature-resistant high-infrared transmittance indium molybdenum oxide thin films as an intermediate window layer for multi-junction photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 127, 174–178. [Google Scholar] [CrossRef]
- Ahmed, G.; Mohamed, W.S.; Hasaneen, M.F.; Ali, H.M.; Ibrahim, E.M.M. Optical, structural, electrical and photocatalytic properties of aluminum doped zinc oxide nanostructures. Opt. Mater. 2023, 140, 113880. [Google Scholar] [CrossRef]
- Mamat, M.H.; Sahdan, M.Z.; Khusaimi, Z.; Ahmed, A.Z.; Abdullah, S.; Rusop, M. Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Opt. Mater. 2010, 32, 696–699. [Google Scholar] [CrossRef]
- Fitriana, F.; Septiani, N.L.W.; Irzaman, I.; Ferdiansjah, F.; Fahmi, M.Z.; Adhika, D.R.; Suyatman, S.; Nugraha, N.; Yuliarto, B. Preparation of (002)-oriented ZnO for CO gas sensor. Mater. Res. Express 2019, 6, 064003. [Google Scholar] [CrossRef]
- Li, K.; Luo, Y.; Liu, B.; Gao, L.; Duan, G. High-performance NO2-gas sensing of ultrasmall ZnFe2O4 nanoparticles based on surface charge transfer. J. Mater. Chem. A 2019, 7, 5539–5551. [Google Scholar] [CrossRef]
- Kumar, R.R.; Murugesan, T.; Dash, A.; Hsu, C.-H.; Gupta, S.; Manikandan, A.; Anbalagan, A.K.; Lee, C.-H.; Tai, N.-H.; Chueh, Y.-L.; et al. Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study. Appl. Surf. Sci. 2021, 536, 147933. [Google Scholar] [CrossRef]
- Hiremath, M.V.; Momin, N.; Kangralkar, M.V.; Manjanna, J.; Hegde, B.G.; Byalollikar, D.G. Synthesis and characterization of Fe-doped ZnO films for enhanced NO2 gas-sensing applications. J. Korean Phys. Soc. 2024, 85, 772–782. [Google Scholar] [CrossRef]
- Nagarjuna, Y.; Hsiao, Y.-J. TeO2 doped ZnO nanostructure for the enhanced NO2 gas sensing on MEMS sensor device. Sens. Actuators B Chem. 2024, 401, 134891. [Google Scholar] [CrossRef]
Temperature (°C) | Sample | Ra (Ω) | Response | Response Time (s) | Recovery Time (s) |
---|---|---|---|---|---|
150 | ZnO | 2.0 × 106 | 64.6 | 106 | 252 |
AZO50 | 1.0 × 105 | 2776.8 | 148 | 72 | |
AZO33 | 8.8 × 104 | 4277.3 | 92 | 90 | |
AZO25 | 1.6 × 105 | 1758.9 | 70 | 40 | |
AZO20 | 3.1 × 105 | 767.3 | 232 | 104 | |
AZO17 | 4.6 × 105 | 91.5 | 230 | 158 | |
200 | ZnO | 1.1 × 105 | 255.2 | 98 | 52 |
AZO50 | 2.8 × 104 | 4841.2 | 72 | 28 | |
AZO33 | 2.6 × 104 | 7058.7 | 72 | 34 | |
AZO25 | 3.6 × 104 | 6502.7 | 94 | 28 | |
AZO20 | 3.8 × 104 | 3020.0 | 54 | 30 | |
AZO17 | 6.1 × 104 | 165.0 | 207 | 44 |
Sample | Concentration (ppm) | Operating Temperature (°C) | Response Equation | Response | Reference |
---|---|---|---|---|---|
Al-doped ZnO nanorod | 5 | 175 | (Rg − Ra)/Ra × 100 | 85% | [31] |
Al-doped ZnO nanostructure | 1 | 240 | Rg/Ra | 103.98 | [32] |
Al-doped ZnO nanocomposite | 5 | 200 | Rg/Ra | 13.27 | [33] |
Fe-doped ZnO thin film | 10 | 200 | Rg/Ra | 2.5 | [50] |
TeO2-doped ZnO nanostructure | 1 | 100 | (Rg − Ra)/Ra × 100 | 80% | [51] |
Al-doped ZnO thin film (AZO33) | 1 | 100 | Rg/Ra | 44.9 | This work |
1 | 150 | Rg/Ra | 847.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bak, S.-Y.; Lee, S.-H.; Jang, H.; Kim, M.; Kim, S.; Yi, M. Transparent Al-Doped ZnO Thin Films for High-Sensitivity NO2 Gas Sensing. Sensors 2025, 25, 3622. https://doi.org/10.3390/s25123622
Bak S-Y, Lee S-H, Jang H, Kim M, Kim S, Yi M. Transparent Al-Doped ZnO Thin Films for High-Sensitivity NO2 Gas Sensing. Sensors. 2025; 25(12):3622. https://doi.org/10.3390/s25123622
Chicago/Turabian StyleBak, So-Young, Se-Hyeong Lee, Hyeongrok Jang, Minseong Kim, Sungjae Kim, and Moonsuk Yi. 2025. "Transparent Al-Doped ZnO Thin Films for High-Sensitivity NO2 Gas Sensing" Sensors 25, no. 12: 3622. https://doi.org/10.3390/s25123622
APA StyleBak, S.-Y., Lee, S.-H., Jang, H., Kim, M., Kim, S., & Yi, M. (2025). Transparent Al-Doped ZnO Thin Films for High-Sensitivity NO2 Gas Sensing. Sensors, 25(12), 3622. https://doi.org/10.3390/s25123622