Secure and Trusted Crowdsensing for Outdoor Air Quality Monitoring: State of the Art and Perspectives
Abstract
1. Introduction
2. Distributed Air Quality Monitoring Systems: Health and Socioeconomical Perspectives
3. Technologies and Approaches for Distributed Monitoring of Outdoor Air Quality
3.1. IoT and Crowdsensing for Air Quality Monitoring
3.2. Security Issues of Distributed Monitoring Applications
3.2.1. Exploitation of Firmware Vulnerabilities
3.2.2. Malware Attacks
3.2.3. Insecure Communication
3.2.4. Data Poisoning
3.2.5. Data Security
4. Towards Distributed Air-Monitoring Systems: Open Challenges and Opportunities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Beck, U. Risk Society: Towards a New Modernity; SAGE Publications: London, UK, 1992. [Google Scholar]
- European Commission. Climate Action. 2023. Available online: https://climate.ec.europa.eu (accessed on 28 May 2025).
- Hicks, W.; Whitfield, C.; Bealey, W.; Sutton, M. Nitrogen Deposition and Natura 2000: Science and Practice in Determining Environmental Impacts; COST Office-European Cooperation in Science and Technology: Brussels, Belgium, 2011. [Google Scholar]
- Alvarez Cruz, A.; Schalm, O.; Morera Hernández, L.E.; Martínez Laguardia, A.; Alejo Sánchez, D.; Morales Pérez, M.C.; González Rivero, R.A.; Morera Gómez, Y. Benchmarking Low-Cost Particulate Matter Sensors: Evaluating Performance Under Controlled Environmental Conditions Using Low-Cost Experimental Setups. Atmosphere 2025, 16, 172. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; p. xxi. 273p. [Google Scholar]
- Conti, S.; Ferrara, P.; D’Angiolella, L.; Lorelli, S.; Agazzi, G.; Fornari, C.; Cesana, G.; Mantovani, L. The economic impact of air pollution: A European assessment. Eur. J. Public Health 2020, 30, ckaa165.084. [Google Scholar] [CrossRef]
- Goldstein, A.H.; Galbally, I.E. Known and unexplored organic constituents in the earth’s atmosphere. Environ. Sci. Technol. 2007, 41, 1514–1521. [Google Scholar] [CrossRef]
- Wong, C.M.; Vichit-Vadakan, N.; Kan, H.; Qian, Z. Public Health and Air Pollution in Asia (PAPA): A multicity study of short-term effects of air pollution on mortality. Environ. Health Perspect. 2008, 116, 1195–1202. [Google Scholar] [CrossRef]
- Galan, I.; Tobias, A.; Banegas, J.; Aranguez, E. Short-term effects of air pollution on daily asthma emergency room admissions. Eur. Respir. J. 2003, 22, 802–808. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Short-term effects of air pollution on cardiovascular diseases: Outcomes and mechanisms. J. Thromb. Haemost. 2007, 5, 2169–2174. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Lee, H.J.; Oh, S.; Lee, J.K.; Heo, E.Y.; Kim, D.K. Combined effect of changes in NO2, O3, PM2.5, SO2 and CO concentrations on small airway dysfunction. Respirology 2024, 29, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Karimi, B.; Samadi, S. Long-term exposure to air pollution on cardio-respiratory, and lung cancer mortality: A systematic review and meta-analysis. J. Environ. Health Sci. Eng. 2024, 22, 75–95. [Google Scholar] [CrossRef]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef]
- Southerland, V.A.; Brauer, M.; Mohegh, A.; Hammer, M.S.; van Donkelaar, A.; Martin, R.V.; Apte, J.S.; Anenberg, S.C. Global urban temporal trends in fine particulate matter (PM2·5) and attributable health burdens: Estimates from global datasets. Lancet Planet. Health 2022, 6, e139–e146. [Google Scholar] [CrossRef]
- Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B.A.; Schwartz, J.D. Long-and short-term exposure to PM2. 5 and mortality: Using novel exposure models. Epidemiology 2013, 24, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Causey, K.; Burkart, K.; Wozniak, S.; Cohen, A.; Brauer, M. Ambient and household PM2.5 pollution and adverse perinatal outcomes: A meta-regression and analysis of attributable global burden for 204 countries and territories. PLoS Med. 2021, 18, e1003718. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Kang, S.C.; Kim, S.Y.; Cho, Y.J.; Hwang, S. Long-term exposure to PM10 increases lung cancer risks: A cohort analysis. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2022, 54, 1030–1037. [Google Scholar] [CrossRef]
- Feng, X.; Qiu, F.; Zheng, L.; Zhang, Y.; Wang, Y.; Wang, M.; Xia, H.; Tang, B.; Yan, C.; Liang, R. Exposure to volatile organic compounds and mortality in US adults: A population-based prospective cohort study. Sci. Total Environ. 2024, 928, 172512. [Google Scholar] [CrossRef]
- Villeneuve, P.J.; Jerrett, M.; Su, J.; Burnett, R.T.; Chen, H.; Brook, J.; Wheeler, A.J.; Cakmak, S.; Goldberg, M.S. A cohort study of intra-urban variations in volatile organic compounds and mortality, Toronto, Canada. Environ. Pollut. 2013, 183, 30–39. [Google Scholar] [CrossRef]
- Riggs, D.W.; Malovichko, M.V.; Gao, H.; McGraw, K.E.; Taylor, B.S.; Krivokhizhina, T.; Rai, S.N.; Keith, R.J.; Bhatnagar, A.; Srivastava, S. Environmental exposure to volatile organic compounds is associated with endothelial injury. Toxicol. Appl. Pharmacol. 2022, 437, 115877. [Google Scholar] [CrossRef]
- Nalini, M.; Poustchi, H.; Bhandari, D.; Chang, C.M.; Blount, B.C.; Wang, L.; Feng, J.; Gross, A.; Khoshnia, M.; Pourshams, A.; et al. Volatile organic compounds and mortality from ischemic heart disease: A case-cohort study. Am. J. Prev. Cardiol. 2024, 19, 100700. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, E.; Dellink, R.; Chateau, J. The sectoral and regional economic consequences of outdoor air pollution to 2060. Energy Econ. 2018, 71, 89–113. [Google Scholar] [CrossRef]
- Romanello, M.; Di Napoli, C.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Walawender, M.; Ali, Z.; Ameli, N.; Ayeb-Karlsson, S.; et al. The 2023 report of the Lancet Countdown on health and climate change: The imperative for a health-centred response in a world facing irreversible harms. Lancet 2023, 402, 2346–2394. [Google Scholar] [CrossRef]
- European Environment Agency. Europe’s Air Quality Status 2024; Briefing 05/2024; European Environment Agency: Copenhagen, Denmark, 2024; Available online: https://www.eea.europa.eu/publications/europes-air-quality-status-2024 (accessed on 29 May 2025).
- European Commission. EU Action Plan: Towards Zero Pollution for Air, Water and Soil; Communication COM(2021) 400 Final; European Commission: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2021:400:FIN (accessed on 29 May 2025).
- European Commission. Proposal for a Directive of the European Parliament and of the Council on Ambient Air Quality and Cleaner Air for Europe (Recast); COM Document COM(2022) 542 Final; European Commission: Brussels, Belgium, 2022; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52022PC0542 (accessed on 29 May 2025).
- Thunis, P.; Janssen, S.; Wesseling, J.; Piersanti, A.; Pirovano, G.; Tarrason, L.; Martin, F.; Lopez-Aparicio, S.; Bessagnet, B.; Guevara, M.; et al. Recommendations for the Revision of the Ambient Air Quality Directives (AAQDs) Regarding Modelling Applications; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Suhag, D.; Jha, V. A comprehensive survey on mobile crowdsensing systems. J. Syst. Archit. 2023, 142, 102952. [Google Scholar] [CrossRef]
- Tomat, V.; Ramallo-González, A.P.; Skarmeta Gómez, A.F. A comprehensive survey about thermal comfort under the IoT paradigm: Is crowdsensing the new horizon? Sensors 2020, 20, 4647. [Google Scholar] [CrossRef]
- Diviacco, P.; Iurcev, M.; Carbajales, R.J.; Potleca, N.; Viola, A.; Burca, M.; Busato, A. Monitoring air quality in urban areas using a vehicle sensor network (VSN) crowdsensing paradigm. Remote Sens. 2022, 14, 5576. [Google Scholar] [CrossRef]
- Diviacco, P.; Iurcev, M.; Carbajales, R.J.; Viola, A.; Potleca, N. Design and Implementation of a Crowdsensing-Based Air Quality Monitoring Open and FAIR Data Infrastructure. Processes 2023, 11, 1881. [Google Scholar] [CrossRef]
- Jiménez, P.; Santa, J.; Rubio-Aparicio, J.; Ramos, E.; Martínez, R.; Egea-López, E. Urban crowdsensing by personal mobility vehicles to manage air pollution. Transp. Res. Procedia 2023, 71, 164–171. [Google Scholar] [CrossRef]
- De Vito, S.; Esposito, E.; Massera, E.; Formisano, F.; Fattoruso, G.; Ferlito, S.; Del Giudice, A.; D’Elia, G.; Salvato, M.; Polichetti, T.; et al. Crowdsensing IoT architecture for pervasive air quality and exposome monitoring: Design, development, calibration, and long-term validation. Sensors 2021, 21, 5219. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Xiao, T.; Liao, X.; Luo, J.; Wu, C.; Zhang, S.; Li, Y.; Guo, Y. When sharing economy meets iot: Towards fine-grained urban air quality monitoring through mobile crowdsensing on bike-share system. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 61. [Google Scholar] [CrossRef]
- Mahajan, S.; Gabrys, J.; Armitage, J. Airkit: A citizen-sensing toolkit for monitoring air quality. Sensors 2021, 21, 4044. [Google Scholar] [CrossRef]
- Jezdović, I.; Popović, S.; Radenković, M.; Labus, A.; Bogdanović, Z. A crowdsensing platform for real-time monitoring and analysis of noise pollution in smart cities. Sustain. Comput. Inform. Syst. 2021, 31, 100588. [Google Scholar] [CrossRef]
- Trivedi, A.; Bovornkeeratiroj, P.; Breda, J.; Shenoy, P.; Taneja, J.; Irwin, D. Phone-based ambient temperature sensing using opportunistic crowdsensing and machine learning. Sustain. Comput. Inform. Syst. 2021, 29, 100479. [Google Scholar] [CrossRef]
- Felici-Castell, S.; Segura-Garcia, J.; Perez-Solano, J.J.; Fayos-Jordan, R.; Soriano-Asensi, A.; Alcaraz-Calero, J.M. AI-IoT low-cost pollution-monitoring sensor network to assist citizens with respiratory problems. Sensors 2023, 23, 9585. [Google Scholar] [CrossRef]
- Guastella, D.A.; Campss, V.; Gleizes, M.P. A cooperative multi-agent system for crowd sensing based estimation in smart cities. IEEE Access 2020, 8, 183051–183070. [Google Scholar] [CrossRef]
- Zhang, H.; Srinivasan, R. A systematic review of air quality sensors, guidelines, and measurement studies for indoor air quality management. Sustainability 2020, 12, 9045. [Google Scholar] [CrossRef]
- Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. Computer 2017, 50, 80–84. [Google Scholar] [CrossRef]
- Chen, F.; Huo, Y.; Zhu, J.; Fan, D. A Review on the Study on MQTT Security Challenge. In Proceedings of the 2020 IEEE International Conference on Smart Cloud (SmartCloud), Washington, DC, USA, 6–8 November 2020; pp. 128–133. [Google Scholar] [CrossRef]
- Biggio, B.; Roli, F. Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, Toronto, ON, Canada, 15–19 October 2018; pp. 2154–2156. [Google Scholar] [CrossRef]
- Pinto, G.P.; Donta, P.K.; Dustdar, S.; Prazeres, C. A Systematic Review on Privacy-Aware IoT Personal Data Stores. Sensors 2024, 24, 2197. [Google Scholar] [CrossRef]
- Ghayvat, H.; Sharma, M.; Gope, P.; Sharma, P.K. SHARIF: Solid Pod-Based Secured Healthcare Information Storage and Exchange Solution in Internet of Things. IEEE Trans. Ind. Inform. 2022, 18, 5609–5618. [Google Scholar] [CrossRef]
- Mahajan, S.; Kumar, P.; Pinto, J.A.; Riccetti, A.; Schaaf, K.; Camprodon, G.; Smári, V.; Passani, A.; Forino, G. A citizen science approach for enhancing public understanding of air pollution. Sustain. Cities Soc. 2020, 52, 101800. [Google Scholar] [CrossRef]
- Seaborn, K.; Fels, D.I. Gamification in theory and action: A survey. Int. J. Hum.-Comput. Stud. 2015, 74, 14–31. [Google Scholar] [CrossRef]
- Alsawaier, R.S. The effect of gamification on motivation and engagement. Int. J. Inf. Learn. Technol. 2018, 35, 56–79. [Google Scholar] [CrossRef]
- Bosello, M.; Delnevo, G.; Mirri, S. On exploiting Gamification for the Crowdsensing of Air Pollution: A Case Study on a Bicycle-based System. In Proceedings of the 6th EAI International Conference on Smart Objects and Technologies for Social Good, Antwerp, Belgium, 14–16 September 2020. [Google Scholar]
- Xiao, R.; Wu, Z.; Hamari, J. Internet-of-gamification: A review of literature on IoT-enabled gamification for user engagement. Int. J. Hum.-Interact. 2022, 38, 1113–1137. [Google Scholar] [CrossRef]
- Bitrián, P.; Buil, I.; Catalán, S. Enhancing user engagement: The role of gamification in mobile apps. J. Bus. Res. 2021, 132, 170–185. [Google Scholar] [CrossRef]
- Mendoza, K.; Villalobos-Daniel, V.E.; Jáuregui, A.; Valero-Morales, I.; Hernández-Alcaraz, C.; Zacarías-Alejandro, N.; Alarcon-Guevara, R.O.; Barquera, S. Development of a crowdsourcing-and gamification-based mobile application to collect epidemiological information and promote healthy lifestyles in Mexico. Sci. Rep. 2024, 14, 6174. [Google Scholar] [CrossRef] [PubMed]
- Delnevo, G.; Aguzzi, G.; Letizi, S.; Luffarelli, M.; Petreti, A.; Mirri, S. Encouraging users in waste sorting using deep neural networks and gamification. In Proceedings of the Conference on Information Technology for Social Good, Roma, Italy, 9–11 September 2021; pp. 230–235. [Google Scholar]
- Hassan, L.; Hamari, J. Gameful civic engagement: A review of the literature on gamification of e-participation. Gov. Inf. Q. 2020, 37, 101461. [Google Scholar] [CrossRef]
- Singh, Y.; Milan, R. Utilitarian and hedonic values of gamification and their influence on brand engagement, loyalty, trust and WoM. Entertain. Comput. 2025, 52, 100868. [Google Scholar] [CrossRef]
- Fritz, S.; Sturn, T.; Karner, M.; Karanam, S.; See, L.; Laso Bayas, J.C.; McCallum, I. Crowdsourcing In-Situ Data Collection Using Gamification. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 254–257. [Google Scholar] [CrossRef]
Pollutant | EU Limit | WHO Guideline (2021) | Averaging Time |
---|---|---|---|
PM2.5 | 25 µg/m3 | 5 µg/m3 | Annual |
PM10 | 40 µg/m3 | 15 µg/m3 | Annual |
NO2 | 40 µg/m3 | 10 µg/m3 | Annual |
O3 | 180 µg/m3 | 100 µg/m3 | 8-h mean |
SO2 | 125 µg/m3 | 40 µg/m3 | 24-h mean |
CO | 10 mg/m3 | 4 mg/m3 | 8-h mean |
Ref. | Objects | Collected Data | Used Devices | Data Utilization | User Involvement |
---|---|---|---|---|---|
[30] | Vehicles (buses, cars) | PM10, PM2.5, geolocation | Nova SDS011 (Nova Fitness Co., Jinan, China) | Web-based visualization | Participatory |
[31] | Vehicles (buses) | PM10, PM2.5 | Nova SDS011 (Nova Fitness Co., Jinan, China) | Web-based visualization, statistical correction | Participatory |
[32] | Personal vehicles and traffic sensors | NO2, CO, PMx, noise | Custom board, sensors not specified | Web-based visualization, prediction | Opportunistic |
[33] | IoT devices | NO2, PM, personal exposure | Alphasense CO-A4, NO2-A43F and OX-A431 (Alphasense Ltd., Essex, UK) | Web-based visualization, prediction | Participatory |
[34] | Shared bikes, IoT devices | PM2.5, CO, NO2 | Custom box based on Arduino, sensors not specified | Missing data estimation, web-based visualization | Opportunistic |
[35] | IoT devices | PM, air pollution | Custom box with ESP8266 microcontroller (Espressif Systems, Shanghai, China), PMS 5003 sensor (Plantower, Beijing, China), and SHT31-D sensor (Sensirion AG, Stäfa, Switzerland) | Web-based visualization, data stories | Participatory |
[36] | Smartphones | Noise levels | Smartphone built-in microphone | Web-based analysis and support system | Participatory |
[37] | Smartphones (battery sensors) | Temperature | Smartphone battery temperature sensor | HVAC optimization | Opportunistic |
[38] | IoT devices | CO2, NO2, PM10, PM2.5 | MiCS5524 (SGX Sensortech, Neuchâtel, Switzerland), Plantower PM2.5 (Plantower, Beijing, China), and MH-Z19B (Winsen Electronics, Zhengzhou, China) | Prediction, early warnings | Opportunistic |
[39] | IoT devices | Temperature, humidity, CO2 | Sensors not specified | Missing data estimation, web-based visualization | Opportunistic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marche, C.; Massidda, E.; Sanna, A.; Angius, G.; Nitti, M.; Maiorca, D.; Lai, S. Secure and Trusted Crowdsensing for Outdoor Air Quality Monitoring: State of the Art and Perspectives. Sensors 2025, 25, 3573. https://doi.org/10.3390/s25123573
Marche C, Massidda E, Sanna A, Angius G, Nitti M, Maiorca D, Lai S. Secure and Trusted Crowdsensing for Outdoor Air Quality Monitoring: State of the Art and Perspectives. Sensors. 2025; 25(12):3573. https://doi.org/10.3390/s25123573
Chicago/Turabian StyleMarche, Claudio, Emmanuele Massidda, Alessandro Sanna, Gianmarco Angius, Michele Nitti, Davide Maiorca, and Stefano Lai. 2025. "Secure and Trusted Crowdsensing for Outdoor Air Quality Monitoring: State of the Art and Perspectives" Sensors 25, no. 12: 3573. https://doi.org/10.3390/s25123573
APA StyleMarche, C., Massidda, E., Sanna, A., Angius, G., Nitti, M., Maiorca, D., & Lai, S. (2025). Secure and Trusted Crowdsensing for Outdoor Air Quality Monitoring: State of the Art and Perspectives. Sensors, 25(12), 3573. https://doi.org/10.3390/s25123573