AI-Powered Analysis of Eye Tracker Data in Basketball Game
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Device
2.3. Data
2.4. Neural Networks
2.5. Processing Pipeline
3. Experimental Results
3.1. Preliminary Findings
3.2. Preliminary Statistical Analyses
3.3. Referee
3.4. Coach Team A
3.5. Coach Team B
3.6. ANOVA Study Design
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AR | Augmented Reality |
AOI | Area of Interest |
BIDS | Brain Imaging Data Structure |
CNN | Convolutional Neural Network |
CV | Computer Vision |
DICOM | Digital Imaging and Communications in Medicine |
DL | Deep Learning |
EDF | European Data Format |
EEG | Electroencephalography |
FOV | Field of View |
IMU | Inertial Measurement Unit |
IR | InfraRed |
ML | Machine Learning |
POV | Point of View |
SegFormer | Simple and Efficient Design for Semantic Segmentation with Transformers |
SVR | Support Vector Regression |
QE | Quiet Eye |
YOLOv8N | You Only Look Once neural network v. 8N |
Appendix A. Algorithms
Appendix A.1. Nearest Color
Algorithm A1 Find the nearest color |
|
Appendix A.2. Name of an RGB Color
Algorithm A2 Get the name of an RGB color |
|
Appendix A.3. Predominant Color
Algorithm A3 Calculates the predominant color in a masked region |
|
References
- Cullipher, S.; Hansen, S.J.; VandenPlas, J.R. Eye tracking as a research tool: An introduction. In Eye Tracking for the Chemistry Education Researcher; ACS Publications: Washington, DC, USA, 2018; pp. 1–9. [Google Scholar]
- Kanat, E.A.; Şimşek, D. The ‘Quiet Eye’ and motor performance in basketball free throw shooting. Phys. Educ. Stud. 2021, 25, 103–109. [Google Scholar] [CrossRef]
- Valliappan, N.; Dai, N.; Steinberg, E.; He, J.; Rogers, K.; Ramachandran, V.; Xu, P.; Shojaeizadeh, M.; Guo, L.; Kohlhoff, K.; et al. Accelerating eye movement research via accurate and affordable smartphone eye tracking. Nat. Commun. 2020, 11, 4553. [Google Scholar] [CrossRef] [PubMed]
- Brunyé, T.T.; Drew, T.; Weaver, D.L.; Elmore, J.G. A review of eye tracking for understanding and improving diagnostic interpretation. Cogn. Res. Princ. Implic. 2019, 4, 7. [Google Scholar] [CrossRef]
- Giancamilli, F.; Galli, F.; Chirico, A.; Fegatelli, D.; Mallia, L.; Palombi, T.; Lucidi, F. High-pressure game conditions affect quiet eye depending on the player’s expertise: Evidence from the basketball three-point shot. Brain Sci. 2022, 12, 286. [Google Scholar] [CrossRef]
- Moeinirad, S.; Abdoli, B.; Farsi, A.; Ahmadi, N. Training visual attention improves basketball three-point shot performance under pressure. Sport Sci. Health 2022, 18, 853–861. [Google Scholar] [CrossRef]
- Ruiz, A.J.; Albaladejo, C.; Reina, R.; Moreno, F.J. Basketball referee’s gaze behavior and stimulus selection in relation to visual angle perspective and officiating mechanics and expertise. Eur. J. Hum. Mov. 2023, 50, 4–18. [Google Scholar] [CrossRef]
- Klatt, S.; Noël, B.; Nicklas, A.; Schul, K.; Seifriz, F.; Schwarting, A.; Fasold, F. Gaze behavior and positioning of referee teams during three-point shots in basketball. Appl. Sci. 2021, 11, 6648. [Google Scholar] [CrossRef]
- Ben Chikha, H.; Zoudji, B.; Khacharem, A. The role of coach’s gaze guidance on memorization of tactical movements in basketball: An eye tracking study. Ger. J. Exerc. Sport Res. 2024, 54, 374–382. [Google Scholar] [CrossRef]
- Rui, M.; Fernando, M.; Ricardo, G.; Martinho, D.V.; Rui, M.; Moore, S.A.; Coelho-e Silva, M.J.; Gonçalo, D. Visual Information in Basketball Jump-Shots: Differences between Youth and Adult Athletes. J. Hum. Kinet. 2023, 89, 65. [Google Scholar]
- Ueyama, Y.; Harada, M. Basketball free-throw training with augmented reality-based optimal shot trajectory for novice shooters. Sci. Rep. 2024, 14, 891. [Google Scholar] [CrossRef]
- Chikha, H.B.; Zoudji, B.; Khacharem, A. Coaches’ pointing gestures as means to convey tactical information in basketball: An eye-tracking study. Int. J. Sport Exerc. Psychol. 2024, 22, 236–249. [Google Scholar] [CrossRef]
- Piras, A. The role of the peripheral target in stimulating eye movements. Psychol. Sport Exerc. 2025, 76, 102744. [Google Scholar] [CrossRef] [PubMed]
- Polsinelli, M.; Matteo, A.D.; Lozzi, D.; Mattei, E.; Mignosi, F.; Nazzicone, L.; Stornelli, V.; Placidi, G. Portable Head-Mounted System for Mobile Forearm Tracking. Sensors 2024, 24, 2227. [Google Scholar] [CrossRef]
- Thompson, T.; Steffert, T.; Ros, T.; Leach, J.; Gruzelier, J. EEG applications for sport and performance. Methods 2008, 45, 279–288. [Google Scholar] [CrossRef]
- Sultanov, M.B.; İsmailova, K.Y. Wireless EEG system for Sport Science: Quantitative analysis of movement. In Proceedings of the 2020 7th International Conference on Behavioural and Social Computing (BESC), Bournemouth, UK, 5–7 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Alemanno, M.; Di Pompeo, I.; Marcaccio, M.; Canini, D.; Curcio, G.; Migliore, S. From Gaze to Game: A Systematic Review of Eye-Tracking Applications in Basketball. Brain Sci. 2025, 15, 421. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, N.; Li, S.; Zhao, X. Investigation of eye movement characteristics during free throws at varying intensities among basketball players and its correlation with free throw percentage. PLoS ONE 2024, 19, e0299938. [Google Scholar] [CrossRef]
- Meyer, J.; Fasold, F.; Schul, K.; Sonnenschein, M.; Klatt, S. The defender’s vision—Gaze behavior of one-on-one defenders in basketball. J. Sport Exerc. Psychol. 2022, 44, 127–137. [Google Scholar] [CrossRef]
- Tatara, S.; Toda, H.; Maeda, F.; Ito, A.; Handa, T. Comparison of the Saccadic eye movement ability of female professional basketball players and non-athletes. Appl. Sci. 2024, 14, 1108. [Google Scholar] [CrossRef]
- Placidi, G.; Cinque, L.; Foresti, G.L.; Galassi, F.; Mignosi, F.; Nappi, M.; Polsinelli, M. A Context-Dependent CNN-Based Framework for Multiple Sclerosis Segmentation in MRI. Int. J. Neural Syst. 2025, 35, 2550006. [Google Scholar] [CrossRef]
- Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang, B. Segment anything in medical images. Nat. Commun. 2024, 15, 654. [Google Scholar] [CrossRef]
- Antonelli, M.G.; Beomonte Zobel, P.; Manes, C.; Mattei, E.; Stampone, N. Emotional intelligence for the decision-making process of trajectories in collaborative robotics. Machines 2024, 12, 113. [Google Scholar] [CrossRef]
- Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N.; Grossmann, G.; Stumptner, M.; Kuusk, A. Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Syst. Appl. 2023, 216, 119456. [Google Scholar] [CrossRef]
- Goud, P.S.H.V.; Roopa, Y.M.; Padmaja, B. Player performance analysis in sports: With fusion of machine learning and wearable technology. In Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 600–603. [Google Scholar]
- Mgaya, G.B.; Liu, H.; Zhang, B. A survey on applications of modern deep learning techniques in team sports analytics. In Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020) 12, Virtual, 15–18 December 2020; Springer: Cham, Switzerland, 2021; pp. 434–443. [Google Scholar]
- Lakshmi, P.Y.; Sanjaykumar, S.; Dharuman, M.; Elangovan, A. Using Support Vector Regression Kernel Models for Cricket Performance Prediction in the Womens Premier League 2024. Phys. Educ. Theory Methodol. 2024, 24, 72–78. [Google Scholar] [CrossRef]
- Tian, C.; De Silva, V.; Caine, M.; Swanson, S. Use of machine learning to automate the identification of basketball strategies using whole team player tracking data. Appl. Sci. 2019, 10, 24. [Google Scholar] [CrossRef]
- Du, D.; Chai, L.; Li, M.; Jiang, L.; Choosakul, C.; Liu, S. Extracting Features from Foul Actions of Basketball Players in Real Time Using Machine Vision. Int. J. Comput. Intell. Syst. 2024, 17, 67. [Google Scholar] [CrossRef]
- Penumala, R.; Sivagami, M.; Srinivasan, S. Automated goal score detection in football match using key moments. Procedia Comput. Sci. 2019, 165, 492–501. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, L.; Yan, W. AI-Driven Image Recognition System for Automated Offside and Foul Detection in Football Matches Using Computer Vision. Int. J. Adv. Comput. Sci. Appl. 2025, 16, 1191–1198. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Sun, Y.; Qi, H. Injury risk prediction of aerobics athletes based on big data and computer vision. Sci. Program. 2021, 2021, 5526971. [Google Scholar] [CrossRef]
- Rajšp, A.; Fister, I., Jr. A systematic literature review of intelligent data analysis methods for smart sport training. Appl. Sci. 2020, 10, 3013. [Google Scholar] [CrossRef]
- Amankwah, G.; Morgan-Darko, W.; Yang, C. Real-time analysis and profiling of coordinated movements in two-dimensional space using footage from multiple cameras. Int. J. Comput. Appl. 2019, 178, 1–5. [Google Scholar] [CrossRef]
- Parker, S.; Duthie, G.; Robertson, S. A framework for player movement analysis in team sports. Front. Sport. Act. Living 2024, 6, 1375513. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ronda, L.; Beanland, E.; Whitehead, S.; Sweeting, A.; Clubb, J. Tracking systems in team sports: A narrative review of applications of the data and sport specific analysis. Sport. Med.-Open 2022, 8, 15. [Google Scholar] [CrossRef]
- Hammes, F.; Hagg, A.; Asteroth, A.; Link, D. Artificial intelligence in elite sports—A narrative review of success stories and challenges. Front. Sport. Act. Living 2022, 4, 861466. [Google Scholar] [CrossRef]
- Naraine, M.; Wanless, L. Going all in on ai. Sport. Innov. J. 2020, 1, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xu, X. Application of artificial intelligence in basketball sport. J. Educ. Health Sport 2021, 11, 54–67. [Google Scholar] [CrossRef]
- Naik, B.T.; Hashmi, M.F.; Bokde, N.D. A comprehensive review of computer vision in sports: Open issues, future trends and research directions. Appl. Sci. 2022, 12, 4429. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In Proceedings of the NIPS-W, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Assfalg, J.; Bertini, M.; Colombo, C.; Del Bimbo, A.; Nunziati, W. Semantic annotation of soccer videos: Automatic highlights identification. Comput. Vis. Image Underst. 2003, 92, 285–305. [Google Scholar] [CrossRef]
- Huang, C.L.; Shih, H.C.; Chao, C.Y. Semantic analysis of soccer video using dynamic Bayesian network. IEEE Trans. Multimed. 2006, 8, 749–760. [Google Scholar] [CrossRef]
- Afzal, M.; Shah, J.H.; ur Rehman, S.; Khokhar, F.A.; Yasmin, M.; Kadry, S. Automated soccer event detection and highlight generation for short and long views. Multimed. Tools Appl. 2024, 1–21. [Google Scholar] [CrossRef]
- Choroś, K. Video shot selection and content-based scene detection for automatic classification of TV sports news. In Internet–Technical Development and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 73–80. [Google Scholar]
- Choroś, K.; Pawlaczyk, P. Content-based scene detection and analysis method for automatic classification of TV sports news. In Rough Sets and Current Trends in Computing: Proceedings of the 7th International Conference, RSCTC 2010, Warsaw, Poland, 28–30 June 2010; Proceedings 7; Springer: Berlin/Heidelberg, Germany, 2010; pp. 120–129. [Google Scholar]
- Gorgolewski, K.J.; Auer, T.; Calhoun, V.D.; Craddock, R.C.; Das, S.; Duff, E.P.; Flandin, G.; Ghosh, S.S.; Glatard, T.; Halchenko, Y.O.; et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 2016, 3, 160044. [Google Scholar] [CrossRef]
- Pernet, C.R.; Appelhoff, S.; Gorgolewski, K.J.; Flandin, G.; Phillips, C.; Delorme, A.; Oostenveld, R. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci. Data 2019, 6, 103. [Google Scholar] [CrossRef]
- Kemp, B.; Värri, A.; Rosa, A.C.; Nielsen, K.D.; Gade, J. A simple format for exchange of digitized polygraphic recordings. Electroencephalogr. Clin. Neurophysiol. 1992, 82, 391–393. [Google Scholar] [CrossRef]
- Mildenberger, P.; Eichelberg, M.; Martin, E. Introduction to the DICOM standard. Eur. Radiol. 2002, 12, 920–927. [Google Scholar] [CrossRef]
- Halford, J.J.; Clunie, D.A.; Brinkmann, B.H.; Krefting, D.; Rémi, J.; Rosenow, F.; Husain, A.; Fürbass, F.; Ehrenberg, J.A.; Winkler, S. Standardization of neurophysiology signal data into the DICOM® standard. Clin. Neurophysiol. 2021, 132, 993–997. [Google Scholar] [CrossRef]
- Matteo, A.D.; Lozzi, D.; Mignosi, F.; Polsinelli, M.; Placidi, G. A DICOM-based Standard for Quantitative Physical Rehabilitation. Comput. Struct. Biotechnol. 2025, 28, 40–49. [Google Scholar] [CrossRef]
- Lozzi, D.; Di Pompeo, I.; Marcaccio, M.; Ademaj, M.; Migliore, S.; Curcio, G. SPEED: A Graphical User Interface Software for Processing Eye Tracking Data. NeuroSci 2025, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Sogo, H. GazeParser: An open-source and multiplatform library for low-cost eye tracking and analysis. Behav. Res. Methods 2013, 45, 684–695. [Google Scholar] [CrossRef] [PubMed]
- Filetti, M.; Tavakoli, H.R.; Ravaja, N.; Jacucci, G. PeyeDF: An eye-tracking application for reading and self-indexing research. arXiv 2019, arXiv:1904.12152. [Google Scholar]
- Lejarraga, T.; Schulte-Mecklenbeck, M.; Smedema, D. The pyetribe: Simultaneous eyetracking for economic games. Behav. Res. Methods 2016, 49, 1769–1779. [Google Scholar] [CrossRef]
Tail Referee | Lead Referee | ||
---|---|---|---|
Mean ± s.d. | Mean ± s.d. | p-Value | |
DIA Team A | 5.386 ± 0.127 | 5.370 ± 0.0567 | 0.050 |
GAZE Team A | 23.500 ± 10.607 | 22.67 ± 5.033 | 0.127 |
DIA Team B | 5.266 ± 0.278 | 5.404 ± 0.0218 | <0.001 |
GAZE Team B | 86.50 ± 38.891 | 87.33 ± 31.533 | 0.697 |
DIA total | 5.326 ± 0.0757 | 5.387 ± 0.0379 | 0.122 |
GAZE total | 110.00 ± 49.497 | 110.00 ± 26.514 | 0.176 |
Coach Team A | |||
---|---|---|---|
Attack (Mean ± s.d.) | Defense (Mean ± s.d.) | p-Value | |
DIA Team A | 3.69 ± 0.138 | 3.908 ± 0.164 | 0.702 |
GAZE Team A | 22.17 ± 25.269 | 7.11 ± 6.373 | 0.032 |
DIA Team B | 3.65 ± 0.160 | 3.707 ± 0.394 | 0.321 |
GAZE Team B | 57.58 ± 44.771 | 33.00 ± 19.660 | 0.071 |
DIA total | 3.52 ± 0.594 | 3.590 ± 0.847 | 0.464 |
GAZE total | 79.75 ± 67.617 | 40.11 ± 23.730 | 0.029 |
Coach Team B | |||
---|---|---|---|
Attack (Mean ± s.d.) | Defense (Mean ± s.d.) | p-Value | |
DIA Team A | 3.96 ± 0.202 | 4.203 ± 0.148 | 0.627 |
GAZE Team A | 3.86 ± 6.040 | 90.57 ± 120.166 | 0.046 |
DIA Team B | 3.60 ± 0.567 | 4.249 ± 0.125 | 0.016 |
GAZE Team B | 12.14 ± 6.176 | 62.43 ± 85.186 | 0.050 |
DIA total | 3.21 ± 1.116 | 4.226 ± 0.114 | 0.001 |
GAZE total | 16.00 ± 10.312 | 153.00 ± 204.219 | 0.047 |
Coach Team A | Coach Team B | |
---|---|---|
Gazes Attack | 100.44 ± 65.73 | 16.00 ± 10.31 |
Gazes Defense | 40.11 ± 23.72 | 153.00 ± 204.21 |
Result |
Coach Team A | Coach Team B | |
---|---|---|
Pupil Diameter Attack | 3.66 ± 0.13 | 3.21 ± 1.11 |
Pupil Diameter Defense | 3.59 ± 0.84 | 4.22 ± 1.11 |
Result |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozzi, D.; Di Pompeo, I.; Marcaccio, M.; Alemanno, M.; Krüger, M.; Curcio, G.; Migliore, S. AI-Powered Analysis of Eye Tracker Data in Basketball Game. Sensors 2025, 25, 3572. https://doi.org/10.3390/s25113572
Lozzi D, Di Pompeo I, Marcaccio M, Alemanno M, Krüger M, Curcio G, Migliore S. AI-Powered Analysis of Eye Tracker Data in Basketball Game. Sensors. 2025; 25(11):3572. https://doi.org/10.3390/s25113572
Chicago/Turabian StyleLozzi, Daniele, Ilaria Di Pompeo, Martina Marcaccio, Michela Alemanno, Melanie Krüger, Giuseppe Curcio, and Simone Migliore. 2025. "AI-Powered Analysis of Eye Tracker Data in Basketball Game" Sensors 25, no. 11: 3572. https://doi.org/10.3390/s25113572
APA StyleLozzi, D., Di Pompeo, I., Marcaccio, M., Alemanno, M., Krüger, M., Curcio, G., & Migliore, S. (2025). AI-Powered Analysis of Eye Tracker Data in Basketball Game. Sensors, 25(11), 3572. https://doi.org/10.3390/s25113572