A Mobile Analytical Chemistry Workstation with a C4D Sensor for Rapid Detection of Organophosphates Under Field Conditions
Abstract
:Highlights
- The mobile workstation integrates capillary electrophoresis with C4D on disposable PDMS chips, enabling rapid, sensitive organophosphate detection in the field.
- Optimised injection techniques, voltage settings, and a custom adaptor ensure reproducible separations and robust performance under challenging field conditions.
- The portable system reduces analytical turnaround times relative to laboratory methods, enabling rapid decisions in forensic and environmental scenarios.
- Its cost-effective, user-friendly design supports widespread on-site deployment, boosting emergency response and public safety.
Abstract
1. Introduction
- On-site sampling;
- Sample packaging and labelling;
- Transportation;
- Laboratory analysis;
2. Materials and Methods
2.1. Chemicals
2.2. Lab-on-Chip Device Fabrication
2.2.1. Pick-Up Electrode Cell Fabrication
2.2.2. Polydimethylsiloxane (PDMS) Device Fabrication Processes
2.2.3. PDMS Microchip Packaging (Assembling)
2.3. Microchip Adaptor Platform Design
2.4. Suitcase System Integration
2.4.1. Instruments
2.4.2. Chemical Consumables
- DMMP: Dimethyl methylphosphonate, purum ≥ 97.0%, Sigma-Aldrich Ireland (Prod. No. 64258-250ML).
- MES: 2-(N-morpholino)ethanesulfonic acid (MES), ≥99% (titration) (Sigma-Aldrich/Merck, SKU: 475893-500GM), purchased from Sigma-Aldrich/Merck Ireland.
- Histidine: L-Histidine, (S)-2-Amino-3-(4-imidazolyl)propionic acid, ≥99.5% (NT) (Sigma-Aldrich/Merck, SKU: 53319-25G), purchased from Sigma-Aldrich/Merck Ireland.
- Buffer preparation: MES/Histidine buffer was prepared at concentrations of 12.5 mM and 25 mM. The pH was adjusted to 5.73 using a Metrohm 654 pH meter equipped with a microelectrode (Metrohm 6.0232.100).
- Sample preparation: Various concentrations of the analyte DMMP (2.5 mM, 5 mM, 10 mM, and 20 mM) were prepared in the MES/Histidine buffer.
2.5. Method Development
2.5.1. The Double-L Injection
- Loading Phase: The sample is added to reservoir A and driven toward the junction (reservoir D) by EOF, positioning a sample plug at the injection intersection. Meanwhile, a voltage applied between reservoirs B and C maintains a fresh buffer flow.
- Injection Phase: A brief (approximately 1 s) voltage pulse is applied to reservoir A only, injecting the sample plug into the separation channel.
- Separation Phase: The voltages are returned to the loading configuration (voltage reapplied at B), and EOF carries the sample plug through the channel. Within minutes, distinct peaks appear, indicating a successful separation.
2.5.2. System Peak Optimisation
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating Current |
ASE | Advanced Silicon Etching |
CAD | Computer-Aided Design |
CE | Capillary Electrophoresis |
C4D | Capacitively Coupled Contactless Conductivity Detection |
CWC | Chemical Weapons Convention |
DC | Direct Current |
DMMP | Dimethyl Methylphosphonate |
EB-PVD | Electron Beam Physical Vapor Deposition |
EOF | Electro-Osmotic Flow |
GND | Ground |
HVS | High-Voltage Sequencer |
Li-Po | Lithium Polymer |
MES | 2-(N-Morpholino) Ethane Sulfonic Acid |
PDMS | Poly-Di-Methyl-Siloxane |
PMMA | Polymethyl Methacrylate |
UV | Ultra-Violet |
References
- Wilson, I.; Poole, C.; Cooke, M. Encyclopedia of Separation Science, 1st ed.; Academic Press: Cambridge, MA, USA, 2000; ISBN 978-0-12-226770-3. [Google Scholar]
- Ma, J.; Xiao, R.; Li, J.; Zhao, X.; Shi, B.; Li, S. Determination of Organophosphorus Pesticides in Underground Water by SPE-GC-MS. J. Chromatogr. Sci. 2009, 47, 110–115. [Google Scholar] [CrossRef] [PubMed]
- de Souza Pinheiro, A.; da Rocha, G.O.; de Andrade, J.B. A SDME/GC–MS Methodology for Determination of Organophosphate and Pyrethroid Pesticides in Water. Microchem. J. 2011, 99, 303–308. [Google Scholar] [CrossRef]
- Bellón-Gómez, D.; Vela-Corcía, D.; Pérez-García, A.; Torés, J.A. Sensitivity of Podosphaera Xanthii Populations to Anti-Powdery-Mildew Fungicides in Spain. Pest Manag. Sci. 2015, 71, 1407–1413. [Google Scholar] [CrossRef]
- Shimadzu. Analysis of Organophosphate Pesticides. Available online: https://www.shimadzu.eu/industries/environment/soil-fertilizer-waste-material-test/organophosphate-pesticides/index.html (accessed on 30 May 2025).
- Song, X.; Ye, M.; Tang, X.; Wang, C. Ionic Liquids Dispersive Liquid–Liquid Microextraction and HPLC—Atomic Fluorescence Spectrometric Determination of Mercury Species in Environmental Waters. J. Sep. Sci. 2013, 36, 414–420. [Google Scholar] [CrossRef]
- Wang, X.; Qiao, X.; Ma, Y.; Zhao, T.; Xu, Z. Simultaneous Determination of Nine Trace Organophosphorous Pesticide Residues in Fruit Samples Using Molecularly Imprinted Matrix Solid-Phase Dispersion Followed by Gas Chromatography. J. Agric. Food Chem. 2013, 61, 3821–3827. [Google Scholar] [CrossRef] [PubMed]
- Velkoska-Markovska, L.; Petanovska-Ilievska, B. Optimization and development of SPE-HPLC-DAD method for the Determination of Atrazine, Malathion, Fenitrothion and Parathion Pesticide Residues in Apple Juice. Maced. J. Chem. Chem. Eng. 2013, 32, 299. [Google Scholar] [CrossRef]
- Inoue, S.; Saito, T.; Miyazawa, T.; Mase, H.; Inokuchi, S. A Simple Method for Detecting Fenitrothion, Its Metabolie 3-Methyl-4-Nitrophenol, and Other Organophosphorus Pesticides in Human Urine by LC-MS. Forensic Toxicol. 2009, 27, 32–36. [Google Scholar] [CrossRef]
- Fernández, M.; Picó, Y.; Mañes, J. Rapid Screening of Organophosphorus Pesticides in Honey and Bees by Liquid Chromatography—Mass Spectrometry. Chromatographia 2002, 56, 577–583. [Google Scholar] [CrossRef]
- Heo, Y.J.; Lee, K.-J. Application of Micellar Electrokinetic Capillary Chromatography for the Determination of Benzoic Acid and Its Esters in Liquid Formula Medicines as Preservatives. J. Pharm. Biomed. Anal. 1998, 17, 1371–1379. [Google Scholar] [CrossRef]
- Rodríguez, V.G.; Lucangioli, S.E.; Fernández Otero, G.C.; Carducci, C.N. Determination of Bile Acids in Pharmaceutical Formulations Using Micellar Electrokinetic Chromatography. J. Pharm. Biomed. Anal. 2000, 23, 375–381. [Google Scholar] [CrossRef]
- Kim, J.-B.; Terabe, S. On-line sample preconcentration techniques in micellar electrokinetic chromatography. J. Pharm. Biomed. Anal. 2003, 30, 1625–1643. [Google Scholar] [CrossRef]
- van de Meent, M.H.M.; de Jong, G.J. Novel Liquid-Chromatography Columns for Proteomics Research. TrAC Trends Anal. Chem. 2011, 30, 1809–1818. [Google Scholar] [CrossRef]
- Yuan, S.; Zhou, M.; Liu, X.; Jiang, B. Effect of Pressure-Driven Flow on Electroosmotic Flow and Electrokinetic Mass Transport in Microchannels. Int. J. Heat Mass Transf. 2023, 206, 123925. [Google Scholar] [CrossRef]
- Kubáň, P.; Hauser, P.C. Contactless Conductivity Detection for Analytical Techniques—Developments from 2012 to 2014. Electrophoresis 2015, 36, 195–211. [Google Scholar] [CrossRef]
- Fu, J.-L.; Fang, Q.; Zhang, T.; Jin, X.-H.; Fang, Z.-L. Laser-Induced Fluorescence Detection System for Microfluidic Chips Based on an Orthogonal Optical Arrangement. Anal. Chem. 2006, 78, 3827–3834. [Google Scholar] [CrossRef]
- Liu, B.-F.; Ozaki, M.; Utsumi, Y.; Hattori, T.; Terabe, S. Chemiluminescence Detection for a Microchip Capillary Electrophoresis System Fabricated in Poly(dimethylsiloxane). Anal. Chem. 2003, 75, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, P.; Boček, P. Recent Progress in Capillary Isotachophoresis. Electrophoresis 2002, 23, 3858–3864. [Google Scholar] [CrossRef]
- Kubáň, P.; Hauser, P.C. Contactless Conductivity Detection for Analytical Techniques—Developments from 2014 to 2016. Electrophoresis 2017, 38, 95–114. [Google Scholar] [CrossRef]
- Pumera, M.; Wang, J.; Opekar, F.; Jelínek, I.; Feldman, J.; Löwe, H.; Hardt, S. Contactless Conductivity Detector for Microchip Capillary Electrophoresis. Anal. Chem. 2002, 74, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Tait, N.; Regnier, F. Fabrication of Nanocolumns for Liquid Chromatography. Anal. Chem. 1998, 70, 3790–3797. [Google Scholar] [CrossRef]
- Slentz, B.E.; Penner, N.A.; Lugowska, E.; Regnier, F. Nanoliter Capillary Electrochromatography Columns Based on Collocated Monolithic Support Structures Molded in Poly(DiMethyl Siloxane). Electrophoresis 2001, 22, 3736–3743. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Regnier, F. Microfabricated Liquid Chromatography Columns Based on Collocated Monolith Support Structures. J. Pharm. Biomed. Anal. 1998, 17, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Alves Brito-Neto, J.G.; Fracassi Da Silva, J.A.; Blanes, L.; Do Lago, C.L. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 1. Fundamentals. Electroanalysis 2005, 17, 1198–1206. [Google Scholar] [CrossRef]
- De Smet, J.; Gzil, P.; Baron, G.V.; Desmet, G. On the 3-Dimensional Effects in Etched Chips for High Performance Liquid Chromatography-Separations. J. Chromatogr. A 2007, 1154, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, M.; Sicard, E.; Boyer, A.; Dhia, S.B.; Whalen, J.J.; Hubing, T.H.; Coenen, M.; Wada, O. The Electromagnetic Compatibility of Integrated Circuits—Past, Present, and Future. IEEE Trans. Electromagn. Compat. 2009, 51, 78–100. [Google Scholar] [CrossRef]
- Ding, Y.; Garcia, C.D.; Rogers, K.R. Poly(dimethylsiloxane) Microchip Electrophoresis with Contactless Conductivity Detection for Measurement of Chemical Warfare Agent Degradation Products. Anal. Lett. 2008, 41, 335–350. [Google Scholar] [CrossRef]
- Duran, K.-P.; Zhu, Y.; Chen, C.; Swallow, A.; Stewart, R.; Hoobin, P.; Leech, P.; Ovenden, S. Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products. In Biomedical Applications of Micro-and Nanoengineering IV and Complex Systems; Nicolau, D.V., Metcalfe, G., Eds.; SPIE: Bellingham, WA, USA, 2008; p. 72700Q. [Google Scholar]
- Wang, J.; Liu, Y.; He, W.; Chen, Y.; You, H. A Novel Planar Grounded Capacitively Coupled Contactless Conductivity Detector for Microchip Electrophoresis. Micromachines 2022, 13, 394. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Messina, W.; Hogan, A.; Ugwah, J.; Alatawi, H.; van Zalen, E.; Moore, E. Development of a Mobile Analytical Chemistry Workstation Using a Silicon Electrochromatography Microchip and Capacitively Coupled Contactless Conductivity Detector. Micromachines 2021, 12, 239. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Schoenitz, M.; Dreizin, E.L. Vapor-Phase Decomposition of DiMethyl MethylPhosphonate (DMMP), a Sarin Surrogate, in Presence of Metal Oxides. Def. Technol. 2021, 17, 1095–1114. [Google Scholar] [CrossRef]
- Pumera, M. Analysis of Nerve Agents Using Capillary Electrophoresis and Laboratory-On-A-Chip Technology. J. Chromatogr. A 2006, 1113, 5–13. [Google Scholar] [CrossRef]
- Gustafsson, O.; Mogensen, K.B.; Ohlsson, P.D.; Liu, Y.; Jacobson, S.C.; Kutter, J.P. An Clectrochromatography Chip with Integrated Waveguides for UV Absorbance Detection. J. Micromechanics Microengineering 2008, 18, 055021. [Google Scholar] [CrossRef]
- Sia, S.K.; Whitesides, G.M. Microfluidic Devices Fabricated in Poly(DiMethylSiloxane) for Biological Studies. Electrophoresis 2003, 24, 3563–3576. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, X.; Hogan, A.; Messina, W.; Moore, E.J. Fabrication of a Grounded Electrodes Cell with Capacitively Coupled Contactless Conductivity Detection Technique in a Microchip Capillary Electrophoresis Application. In Proceedings of the 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland, 23–26 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
Reservoir | A | B | C | D |
---|---|---|---|---|
Setup 1 | 0.8 kV | 1.2 kV | GND | GND |
Setup 2 | 0.67 kV | 1 kV | GND | GND |
Setup 3 | 0.5 kV | 0.75 kV | GND | GND |
Reservoir | A | B | C | D |
---|---|---|---|---|
Setup 1 | 0.8 kV | GND | GND | GND |
Setup 2 | 0.67 kV | GND | GND | GND |
Setup 3 | 0.5 kV | GND | GND | GND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cao, X.; Messina, W.; Hogan, A.M.; Ugwah, J.; Moore, E. A Mobile Analytical Chemistry Workstation with a C4D Sensor for Rapid Detection of Organophosphates Under Field Conditions. Sensors 2025, 25, 3517. https://doi.org/10.3390/s25113517
Wang Y, Cao X, Messina W, Hogan AM, Ugwah J, Moore E. A Mobile Analytical Chemistry Workstation with a C4D Sensor for Rapid Detection of Organophosphates Under Field Conditions. Sensors. 2025; 25(11):3517. https://doi.org/10.3390/s25113517
Chicago/Turabian StyleWang, Yineng, Xi Cao, Walter Messina, Anna Maria Hogan, Justina Ugwah, and Eric Moore. 2025. "A Mobile Analytical Chemistry Workstation with a C4D Sensor for Rapid Detection of Organophosphates Under Field Conditions" Sensors 25, no. 11: 3517. https://doi.org/10.3390/s25113517
APA StyleWang, Y., Cao, X., Messina, W., Hogan, A. M., Ugwah, J., & Moore, E. (2025). A Mobile Analytical Chemistry Workstation with a C4D Sensor for Rapid Detection of Organophosphates Under Field Conditions. Sensors, 25(11), 3517. https://doi.org/10.3390/s25113517