Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications
Abstract
1. Introduction
2. Dual-Polarized ME-Dipole Antenna Array Configuration
3. Design Guideline and Operating Principle
3.1. Subarray ME-Dipole Antenna
3.2. Differential Feeding Network Design
3.3. In-Phase Feeding Network Design
3.4. Operating Mechanism
3.5. Effect of AMC Surface on Gain and Radiation Pattern
4. Measurement Results and Discussion
4.1. Fabrication and Measurement
4.2. Comparison and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mousavirazi, Z.; Ali, M.M.M.; PourMohammadi, P.; Fei, P.; Denidni, T.A. High-Performance CP Magneto-Electric Dipole Antenna Fed by Printed Ridge Gap Waveguide at Millimeter-Wave. Sensors 2024, 24, 8183. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Yu, C.; Wu, F.; Jiang, Z.; Zheng, S.; Tang, S.-Y.; Yao, Y.; Hong, W. Millimeter-Wave Beam-Tilted Phased Array Antenna for 5G-Enabled IoT Devices. IEEE Internet Things J. 2024, 11, 1496–1508. [Google Scholar] [CrossRef]
- Mousavi, Z.; Rezaei, P. Millimetre-wave beam-steering array antenna by emphasising on improvement of Butler matrix features. IET Microw. Antennas Propag. 2019, 13, 1287–1292. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A Comprehensive Survey. IEEE Internet Things J. 2022, 9, 359–383. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Ali, M.M.M.; Haraz, O.M.; Afifi, I.; Sebak, A.R.; Denidni, T.A. Ultra-Wideband Compact Millimeter-Wave Printed Ridge Gap Waveguide Directional Couplers for 5G Applications. IEEE Access 2022, 10, 90706–90714. [Google Scholar] [CrossRef]
- Hong, W.; Zhang, X.Y.; Kahng, S. Latest Developments of Millimeter-Wave and Terahertz Antenna Measurements for 5G/6G and Satellite Applications. IEEE Antennas Propag. Mag. 2024, 66, 11–12. [Google Scholar] [CrossRef]
- Tuloti, S.H.R.; Mousavirazi, Z.; Kesavan, A.; Denidni, T.A. A low profile dual-polarized transmitarray antenna at Ka-band. AEÜ Int. J. Electron. Commun. 2022, 143, 154016. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Bi, Y.; Li, Y.; Wong, H.; Xiao, B.; Ge, L.; Wang, J. A Millimeter-Wave Wideband Antenna Module with Switchable Fan-Beam Radiation for Wide Coverage of 5G IoT Applications. IEEE Internet Things J. 2023, 10, 20969–20983. [Google Scholar] [CrossRef]
- Loktongbam, P.; Pal, D.; Bandyopadhyay, A.K.; Koley, C. A Brief Review on mm-Wave Antennas for 5G and Beyond Applications. IETE Tech. Rev. 2023, 40, 397–422. [Google Scholar] [CrossRef]
- Jaswal, S.; Yadav, D.; Bhatt, D.P.; Tiwari, M. mmWave Technology: An Impetus for Smart City Initiatives. In Proceedings of the 2nd Smart Cities Symposium (SCS 2019), Bahrain, Bahrain, 24–26 March 2019. [Google Scholar]
- Ford, R.; Zhang, M.; Mezzavilla, M.; Dutta, S.; Rangan, S.; Zorzi, M. Achieving Ultra-Low Latency in 5G Millimeter Wave Cellular Networks. IEEE Commun. Mag. 2017, 55, 196–203. [Google Scholar] [CrossRef]
- Pielli, C.; Ropitault, T.; Zorzi, M. The Potential of mmWaves in Smart Industry: Manufacturing at 60 GHz. In Ad-Hoc, Mobile, and Wireless Networks; Springer: Cham, Switzerland, 2018; pp. 64–76. [Google Scholar]
- Yilmaz, T.; Akan, O.B. On the use of the millimeter wave and low terahertz bands for Internet of Things. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 177–180. [Google Scholar]
- Mazaheri, M.; Abari, O. A Low-Power mmWave Platform for the Internet of Things. GetMobile Mob. Comput. Commun. 2023, 26, 14–18. [Google Scholar] [CrossRef]
- Sahoo, B.P.S.; Chou, C.C.; Weng, C.W.; Wei, H.Y. Enabling Millimeter-Wave 5G Networks for Massive IoT Applications: A Closer Look at the Issues Impacting Millimeter-Waves in Consumer Devices Under the 5G Framework. IEEE Consum. Electron. Mag. 2019, 8, 49–54. [Google Scholar] [CrossRef]
- Elkashlan, M.; Duong, T.Q.; Chen, H.H. Millimeter-wave communications for 5G: Fundamentals: Part I. IEEE Commun. Mag. 2014, 52, 52–54. [Google Scholar] [CrossRef]
- Attia, H.; Abdalrazik, A.; Sharawi, M.S.; Kishk, A.A. Wideband Circularly Polarized Millimeter-Wave DRA Array for Internet of Things. IEEE Internet Things J. 2023, 10, 9597–9606. [Google Scholar] [CrossRef]
- Mousavirazi, Z.; Rafiei, V.; Ali, M.M.M.; Denidni, T.A. A High-Efficiency Zeroth-Order Resonant (ZOR) Antenna Fed by Printed Ridge-Gap Waveguide Technology. In Proceedings of the 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Canada, 1–5 August 2021. [Google Scholar]
- Mousavirazi, Z.; Ali, M.M.M.; Denidni, T.A. Millimeter-Wave High Gain Hybrid ME-DRD Antenna Fed by PRGW Technology. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 9–10. [Google Scholar]
- Jo, O.; Kim, J.-J.; Yoon, J.; Choi, D.; Hong, W. Exploitation of Dual-Polarization Diversity for 5G Millimeter-Wave MIMO Beamforming Systems. IEEE Trans. Antennas Propag. 2017, 65, 6646–6655. [Google Scholar] [CrossRef]
- Mousavirazi, H.N.Z.; Ali, M.M.M.; Rezaei, P.; Denidni, T.A. A Low-Profile and Low-Cost Dual Circularly Polarized Patch Antenna. Prog. Electromagn. Res. Lett. 2022, 107, 67–74. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Wang, H.; Zhu, X.; Wang, Y. Dual-Band and Dual-Circularly Polarized Radial Line Slot Array Antenna on Metal Pin Based Slow-Wave PPW Structure. IEEE Trans. Antennas Propag. 2025. early access. [Google Scholar] [CrossRef]
- Ding, Z.; Li, J.; Cao, J.; Wang, H.; Chia, M.Y.W.; Nasimuddin, N. Wideband Dual-Polarized Metasurface Antenna with Polarization Reconfigurable Controlled by Diode and Resistor, Featuring Low RCS. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 1208–1212. [Google Scholar] [CrossRef]
- Li, F.; Cheng, Y.-F.; Wang, G.; Luo, J. A Novel High-Isolation Dual-Polarized Patch Antenna with Two In-Band Transmission Zeros. Micromachines 2023, 14, 1784. [Google Scholar] [CrossRef]
- Wong, K.L.; Huang, Y.Y.; Li, W.Y. Compact 8-Port 2×2 Array Based on Dual-Polarized Patch Antennas with Modified Cavity Field Distribution for Enhanced Port Isolation for 5G IoT Device MIMO Antennas. IEEE Access 2024, 12, 79311–79326. [Google Scholar] [CrossRef]
- Ma, L.; Lu, J.; Gu, C.; Mao, J. A Wideband Dual-Circularly Polarized, Simultaneous Transmit and Receive (STAR) Antenna Array for Integrated Sensing and Communication in IoT. IEEE Internet Things J. 2023, 10, 6367–6376. [Google Scholar] [CrossRef]
- Park, D.; Choi, J. A Dual-Band Dual-Polarized Antenna with Improved Isolation Characteristics for Polarimetric SAR Applications. Appl. Sci. 2021, 11, 10025. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, S.; Luo, Q.; Wen, L.; Ban, Y.-L.; Yang, X.-X.; Ren, X.; Wu, J. Cavity-Backed Slot-Coupled Patch Antenna Array with Dual Slant Polarization for Millimeter-Wave Base Station Applications. IEEE Trans. Antennas Propag. 2021, 69, 1404–1413. [Google Scholar] [CrossRef]
- Mengozzi, M.; Gibiino, G.P.; Angelotti, A.M.; Florian, C.; Santarelli, A. Beam-Dependent Active Array Linearization by Global Feature-Based Machine Learning. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 895–898. [Google Scholar] [CrossRef]
- Hamberger, G.F.; Trummer, S.; Siart, U.; Eibert, T.F. A single layer dual linearly polarized microstrip patch antenna array for automotive applications in the 77 GHz band student submission. In Proceedings of the 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, USA, 18–21 October 2016; pp. 1–4. [Google Scholar]
- Gao, G.; Li, T.; Meng, J.; Hang, C. A Ka-Band Dual-Polarized Microstrip Antenna Array with High Isolation and Low Cross-Polarization. In Proceedings of the 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 20–23 September 2020; pp. 1–3. [Google Scholar]
- Jang, T.H.; Kim, H.Y.; Kang, D.M.; Kim, S.H.; Park, C.S. 60 GHz Low-Profile, Wideband Dual-Polarized U-Slot Coupled Patch Antenna with High Isolation. IEEE Trans. Antennas Propag. 2019, 67, 4453–4462. [Google Scholar] [CrossRef]
- Kim, G.; Kim, S. Design and Analysis of Dual Polarized Broadband Microstrip Patch Antenna for 5G mmWave Antenna Module on FR4 Substrate. IEEE Access 2021, 9, 64306–64316. [Google Scholar] [CrossRef]
- Bae, H.H.; Jang, T.H.; Kim, H.Y.; Park, C.S. Broadband 120 GHz L-Probe Differential Feed Dual-Polarized Patch Antenna with Soft Surface. IEEE Trans. Antennas Propag. 2021, 69, 6185–6195. [Google Scholar] [CrossRef]
- Feng, B.; Tu, Y.; Chen, J.; Yin, S.; Chung, K.L. Dual Linearly-Polarized Antenna Array with High Gain and High Isolation for 5G Millimeter-Wave Applications. IEEE Access 2020, 8, 82471–82480. [Google Scholar] [CrossRef]
- Diman, A.A.; Karami, F.; Rezaei, P.; Amn-E-Elahi, A.; Mousavirazi, Z.; Denidni, T.A.; Kishk, A.A. Efficient SIW-Feed Network Suppressing Mutual Coupling of Slot Antenna Array. IEEE Trans. Antennas Propag. 2021, 69, 6058–6063. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, H.; Yu, J.; Chen, X. High Gain, Broadband and Dual-Polarized Substrate Integrated Waveguide Cavity-Backed Slot Antenna Array for 60 GHz Band. IEEE Access 2018, 6, 31012–31022. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Guo, Y.X. A Ka-Band Wideband Dual-Polarized Magnetoelectric Dipole Antenna Array on LTCC. IEEE Trans. Antennas Propag. 2020, 68, 4985–4990. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, W.; Xue, Q.; Huang, J.; Che, W. Broadband Dual-Polarized Differential-Fed Filtering Antenna Array for 5G Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2022, 70, 1989–1998. [Google Scholar] [CrossRef]
- Wu, L.X.; Pan, Y.M.; Zheng, S.Y. Millimeter-Wave Wideband Dual-Polarized Aperture-Coupled Magnetoelectric Dipole Antenna Array with High Isolation. IEEE Trans. Antennas Propag. 2024, 72, 2304–2313. [Google Scholar] [CrossRef]
- Xiang, L.; Wu, F.; Chen, K.; Li, Y.; Ma, S.; Xia, X.; Yu, C.; Jiang, Z.H.; Yu, Y.; Hong, W. A Wideband Differentially Fed Dual-Polarized Antenna Array for 5G/6G mmWave Application. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 903–907. [Google Scholar] [CrossRef]
- Dai, X.; Luk, K.M. A Wideband Dual-Polarized Antenna for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2021, 69, 2380–2385. [Google Scholar] [CrossRef]
- Li, Y.; Luk, K.-M. 60-GHz Dual-Polarized Two-Dimensional Switch-Beam Wideband Antenna Array of Aperture-Coupled Magneto-Electric Dipoles. IEEE Trans. Antennas Propag. 2016, 64, 554–563. [Google Scholar] [CrossRef]
- Ashraf, N.; Sebak, A.R.; Kishk, A.A. Packaged Microstrip Line Feed Network on a Single Surface for Dual-Polarized 2(N)x2(M) ME-Dipole Antenna Array. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 596–600. [Google Scholar] [CrossRef]
- Kildal, P.S.; Alfonso, E.; Valero-Nogueira, A.; Rajo-Iglesias, E. Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 84–87. [Google Scholar] [CrossRef]
- Kildal, P.-S.; Zaman, A.U.; Rajo-Iglesias, E.; Alfonso, E.; Valero-Nogueira, A. Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microw. Antennas Propag. 2011, 5, 262–270. [Google Scholar] [CrossRef]
- Mousavirazi, Z.; Ali, M.M.M.; Gheisanab, H.N.; Denidni, T.A. Analysis and design of ultra-wideband PRGW hybrid coupler using PEC/PMC waveguide model. Sci. Rep. 2022, 12, 14214. [Google Scholar] [CrossRef] [PubMed]
- Mousavirazi, Z.; Ali, M.M.M.; Denidni, T.A. Wideband Multi-Port Network Based on Printed-RGW for Millimeter-Wave Applications. In Proceedings of the 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), Portland, OR, USA, 23–28 July 2023; pp. 421–422. [Google Scholar]
- Cheng, Y.; Dong, Y. Wideband Dual-Polarized Gap Waveguide Antenna Array Based on Novel 3-D-Printed Feeding-Network Topologies. IEEE Trans. Antennas Propag. 2023, 71, 1493–1505. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Bayat-Makou, N.; Antoniades, M.A.; Kishk, A.A.; Sebak, A. A Dual-Polarized Magnetoelectric Dipole Array Based on Printed Ridge Gap Waveguide with Dual-Polarized Split-Ring Resonator Lens. IEEE Trans. Antennas Propag. 2020, 68, 3578–3585. [Google Scholar] [CrossRef]
- Ali, M.M.M.; Afifi, I.; Sebak, A.R. A Dual-Polarized Magneto-Electric Dipole Antenna Based on Printed Ridge Gap Waveguide Technology. IEEE Trans. Antennas Propag. 2020, 68, 7589–7594. [Google Scholar] [CrossRef]
- Kakhki, M.B.; Mousavirazi, Z.; Denidni, T.A. High Gain Ridge Gap Dielectric Resonator Antenna using FSS Superstrates. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 71–72. [Google Scholar]
- Mousavirazi, Z.; Rafiei, V.; Ali, M.M.M.; Denidni, T.A. Wideband and Low-Loss Magneto-Electric Dipole Antenna Fed by Printed Ridge-Gap Waveguide Technology. In Proceedings of the 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Winnipeg, MB, Canada, 8–11 August 2021. [Google Scholar]
- Li, A.; Luk, K.-M.; Li, Y. A Dual Linearly Polarized End-Fire Antenna Array for the 5G Applications. IEEE Access 2018, 6, 78276–78285. [Google Scholar] [CrossRef]
- Dong, C.; You, Y.; Shen, S.; Jin, T.; Xu, J.; Huang, J.; Lu, Y. Dual Circularly-Polarized Septum Antenna Array Based on an Air-Filled Dual-Mode Feeding Network. IEEE Trans. Antennas Propag. 2024, 72, 2938–2943. [Google Scholar] [CrossRef]
Parameters | e1 | d1 | wa1 | wc1 | wd1 | wt1 = wt2 | s |
Values (mm) | 0.34 | 1.68 | 0.72 | 4.97 | 0.81 | 1.37 | 0.89 |
Parameters | kc2 | kd2 | sb2 | lc2 | ws2 | wr2 | wd2 |
Values (mm) | 2.65 | 3.46 | 0.8 | 4.66 | 1.51 | 1.99 | 1.57 |
Parameters | sa3 | lc3 | lb3 | la3 | da4 | la4 | wa4 |
Values (mm) | 1.38 | 6.01 | 2.89 | 6.5 | 3.97 | 2.45 | 0.54 |
Ref. | Radiating Element | Array Scale | Feeding Technology | Fabrication Technology | F0 (GHz) | Imp. Bandwidth (−10 dB) | Isolation Level (dB) | Gain (dBi) |
---|---|---|---|---|---|---|---|---|
[46] | ME-dipole | 2 × 2 | SIW | PCB | 60 | 22% | >15 | 12.5 |
[57] | ME-dipole | 1 × 8 | SIW | PCB | 60 | 21% | >45 | 16.1 |
[53] | ME-dipole + Lens | 1 × 4 | PRGW | PCB | 31.5 | 22% | N. A | 16 |
[58] | Waveguide | 8 × 8 | HW | PCB + CNC | 19.7 | 17.4% | >14 | 26.5 |
[42] | Patch | 4 × 4 | L-Probe | LTCC | 26.8 | 19.5% | >22 | 12.7 |
[54] | ME-dipole | 1 × 1 | PRGW | PCB | 30 | 23.4% | >20 | 10.5 |
This work | ME-dipole | 2 × 2 | PRGW | PCB | 30 | 24% | >40 | 13.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavirazi, Z.; Ali, M.M.M.; Sebak, A.R.; Denidni, T.A. Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications. Sensors 2025, 25, 3387. https://doi.org/10.3390/s25113387
Mousavirazi Z, Ali MMM, Sebak AR, Denidni TA. Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications. Sensors. 2025; 25(11):3387. https://doi.org/10.3390/s25113387
Chicago/Turabian StyleMousavirazi, Zahra, Mohamed Mamdouh M. Ali, Abdel R. Sebak, and Tayeb A. Denidni. 2025. "Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications" Sensors 25, no. 11: 3387. https://doi.org/10.3390/s25113387
APA StyleMousavirazi, Z., Ali, M. M. M., Sebak, A. R., & Denidni, T. A. (2025). Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications. Sensors, 25(11), 3387. https://doi.org/10.3390/s25113387