Experimental Estimation of Kinematic Viscosity of Low-Density Air Using Optically Derived Macroscopic Transient Flow Parameters
Abstract
1. Introduction
2. Parachute Systems’ Dynamics
2.1. Experimental Observations
2.2. Theoretical Model of Viscous Stratospheric Flow
3. Literature Viscosity Models and Comparison with Experimental Method
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pankratov, B.M. Re-Entry Devices; Mashinostroyeniye: Moscow, Russia, 1984. [Google Scholar]
- Churkin, V. A two-dimensional analysis of parachute-cable systems dynamics. In Proceedings of the Third Seminar on Recent Research and Design Progress in Aeronautical Engineering and Its Influence on Education, Part I; Zdobysław, G., Ed.; OFPW: Warszawa, Poland, 1998; pp. 123–125. [Google Scholar]
- Xue, X.; Jia, H.; Rong, W.; Wang, Q.; Wen, C.-Y. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems. Chin.J. Aeronaut. 2022, 35, 45–54. [Google Scholar] [CrossRef]
- Voronich, I.; Rusakov, S. On the kinetically oriented method of simulation of the continuum flow. In Proceedings of the Second Seminar on Recent Research and Design Progress in Aeronautical Engineering and Its Influence on Education, Part II; Zdobysław, G., Ed.; OFPW: Warszawa, Poland, 1997; pp. 221–225. [Google Scholar]
- Mathews, J.D. Sporadic E: Current views and recent progress. J. Atmos. Sol.-Terr. Phys. 1998, 60, 413–435. [Google Scholar] [CrossRef]
- Resende, L.C.A.; Zhu, Y.; Denardini, C.M.; Da Silva, L.A.; Arras, C.; Chagas, R.A.J.; Chen, S.S.; Marchezi, J.P.; Carmo, C.S.; Pinanço, G.A.S.; et al. Worldwide study of the Sporadic E (Es) layer development during a space weather event. J. Atmos. Sol.-Terr. Phys. 2022, 241, 105966. [Google Scholar] [CrossRef]
- Resende, L.C.A.; Batista, I.S.; Denardini, C.M.; Batista, P.P.; Carrasco, A.J.; Andrioli, V.d.F.; Moro, J. Simulations of blanketing sporadic E-layer over the Brazilian sector driven by tidal winds. J. Atmos. Sol.-Terr. Phys. 2017, 154, 104–114. [Google Scholar] [CrossRef]
- Moro, J.; Xu, J.; Denardini, C.M.; Resende, L.C.A.; Da Silva, L.A.; Chen, S.S.; Carrasco, A.J.; Liu, Z.; Wang, C.; Schuch, N.J. Different sporadic-E (Es) layer types development during the August 2018 geomagnetic storm: Evidence of auroral type (Esa) over the SAMA region. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029701. [Google Scholar] [CrossRef]
- Maeda, J.; Heki, K. Morphology and dynamics of daytime mid-latitude sporadic-E patches revealed by GPS total electron content observations in Japan. Planets Space 2015, 67, 89. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pignalberi, A.; Pietrella, M. On the solar cycle dependance of the amplitude modulation characterizing the mid-latitude sporadic E layer diurnal periodicity. J. Atmos. Sol.-Terr. Phys. 2016, 137, 29–35. [Google Scholar] [CrossRef]
- Roddy, P.A.; Earle, G.D.; Swenson, C.M.; Carlson, C.G.; Bullett, T.W. The composition and horizontal homogeneity of E region plasma layers. J. Geophys. Res. 2007, 112, A06312. [Google Scholar] [CrossRef]
- Gubenko, V.N.; Pavelyev, A.G.; Kirillovich, I.A.; Liou, Y.-A. Case study of inclined sporadic E layers on the Earth’s ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves. Adv. Space Res. 2018, 61, 1702–1716. [Google Scholar] [CrossRef]
- Tiwari, P.; Parihar, N.; Dube, A.; Singh, R.; Sripathi, S. Abnormal behaviour of sporadic E-layer during the total solar eclipse of 22 July 2009 near the crest of EIA over India. Adv. Space Res. 2019, 64, 2145–2153. [Google Scholar] [CrossRef]
- Hysell, D.L.; Nossa, E.; Larsen, M.F.; Munro, J.; Sulzer, M.P.; González, S.A. Sporadic E layer observations over Arecibo using coherent and incoherent scatter radar: Assessing dynamic stability in the lower thermosphere. J. Geophys. Res. 2009, 114, A12303. [Google Scholar] [CrossRef]
- Kagan, L.M.; Bakhmet’eva, N.V.; Belikovich, V.V.; Tolmacheva, A.V. Structure and dynamics of sporadic layers of ionozation imn the ionospheric E region. Radio Sci. 2002, 37, 1106. [Google Scholar] [CrossRef]
- Zettergren, M.; Lynch, K.; Hampton, D.; Nicolls, M.; Wroght, B.; Conde, M.; Moen, J.; Lessard, M.; Miceli, R.; Powell, S. Auroral ionospheric F region density cavity formation and evolution: MICA campaign results. J. Geophys. Res. Space Phys. 2014, 119, 3162–3178. [Google Scholar] [CrossRef]
- Kunduri, B.S.R.; Erickson, P.J.; Baker, J.B.H.; Ruohoniemi, J.M.; Galkin, I.A.; Sterne, K.T. Dynamics od mid-latitude sporadic-E and its impact on HF propagation in the North American sector. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031455. [Google Scholar] [CrossRef]
- Xie, H.Y.; Ning, B.Q.; Zhao, X.K.; Hu, L.H. Case study of simultaneous observations of sporadic sodium layer, E-region field-aligned irregularities and sporadic E layer at low latitude of China. Adv. Space Res. 2017, 59, 1559–1567. [Google Scholar] [CrossRef]
- Danielewicz-Ferchmin, I.; Dega-Dałkowska, A. The employment of the significant liquid structures’ theory for the calculation of the viscosity coefficient of nitrobenzene. Phys. Dielectr. Radiospectrosc. 1981, XII 1-2, 59–67. [Google Scholar]
- Xue, X.; Wen, C.-Y. Review of unsteady aerodynamics of supersonic parachutes. Prog. Aerosp. Sci. 2021, 125, 100728. [Google Scholar] [CrossRef]
- Dahal, N.; Fukiba, K.; Mizuta, K.; Maru, Y. Study of Pressure Oscillations in Supersonic Parachute. Int. J. Aeronaut. Space Sci. 2018, 19, 24–31. [Google Scholar] [CrossRef]
- Leonard, A.; Roshko, A. Aspects of flow-induced vibrations. J. Fluids Struct. 2001, 15, 415–425. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Y.; Zhao, C.; Sun, Y.; Ning, L. Numerical visualization of drop opening process for parachute-payload system adopting fluid-solid coupling simulation. J. Vis. 2022, 25, 229–246. [Google Scholar] [CrossRef]
- Gong, S.; Wu, C. A study of supersonic capsule/rigid disk-gap-band parachute system using large-eddy simulation. Appl. Math. Mech. 2021, 42, 485–500. [Google Scholar] [CrossRef]
- Shuchen Nie, L.Y.; Li, Y.; Sun, Z.; Qiu, B. Influence of fabric permeability on breathing phenomenon of supersonic parachute. J. Ind. Text. 2023, 53, 152808372311717. [Google Scholar] [CrossRef]
- Fukiba, K.; Ueno, Y.; Maru, Y. Suppression of Pressure Oscillation in Supersonic Parachute Model Using a Ring. Int. J. Aeronaut. Space Sci. 2024, 25, 36–45. [Google Scholar] [CrossRef]
- Kunze, S.; Brücker, C. Control of vortex shedding on a circular cylinder using self-adaptive hairy-flaps. Comptes Rendues Mec. 2012, 340, 41–56. [Google Scholar] [CrossRef]
- BEXUS User Manual. Document ID: BX_REF_BEXUS_User Manual_v8-1_24Nov23, REXUS/BEXUS Programme, 2023. Available online: https://rexusbexus.net/bexus/bexus-user-manual/ (accessed on 20 May 2025).
- Miś, T.A.; Modelski, J. Stratospheric VLF Vertical Electric Mono- And Dipole Antenna Tests in 2014–2015. In Proceedings of the 2018 Baltic URSI Symposium (URSI), Poznań, Poland, 14–17 May 2018; pp. 566–570. [Google Scholar]
- Miś, T.A.; Modelski, J. In-Flight Electromagnetic Compatibility of Airborne Vertical VLF Antennas. Sensors 2022, 22, 5302. [Google Scholar] [CrossRef]
- Miś, T.A.; Modelski, J. Risk Assessment and Experimental Light-Balloon Deployment of a Stratospheric Vertical VLF Transmitter. Sensors 2023, 23, 1073. [Google Scholar] [CrossRef]
- Słota, K.; Maryniak, J. Physical and mathematical modelling of air torpedo dynamics during free flight with a parachute. In Proceedings of the ML-X ‘Mechanics in Aviation’ Symposium, Polish Association of Theoretical and Applied Mechanics, Warsaw, Poland, 3–5 June 2002. [Google Scholar]
- Placzek, A.; Sigrist, J.-F.; Hamdouni, A. Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations. Comput. Fluids 2009, 38, 80–100. [Google Scholar] [CrossRef]
- Dobrolienskiy, Y.P. Flight Dynamics in Disturbed Atmosphere; Izdatielstvo Mashinostroieniye: Moscow, Russia, 1969. [Google Scholar]
- Peri, L.N.P.; Ingenito, A.; Teofilatto, P. Large-Eddy Simulations of a Hypersonic Re-Entry Capsule Coupled with the Supersonic Disk-Gap-Band Parachute. Aerospace 2024, 11, 94. [Google Scholar] [CrossRef]
- Raghavan, K.; Bernitsas, M.M. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports. Ocean. Eng. 2011, 38, 719–731. [Google Scholar] [CrossRef]
- Rabinovich, M.I.; Sushchik, M.M. Coherent Structures in Turbulent Flows. Nonlinear Waves; Izdatielstvo Nauka: Moscow, Russia, 1983; pp. 56–85. [Google Scholar]
- Prandtl, L. Dynamics of Flows; PWN: Warsaw, Poland, 1956. [Google Scholar]
- Landau, L.D.; Lifshits, E.M. Hydrodynamics; PWN: Warsaw, Poland, 1994. [Google Scholar]
- Roshko, A. On the Development of Turbulent Waves from Vortex Streets. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1952. [Google Scholar]
- Ahlborn, B.; Seto, M.L.; Noack, B.R. On drag, Strouhal number and vortex-street structure. Fluid Dyn. Res. 2002, 30, 379–399. [Google Scholar] [CrossRef]
- Olim, A.M.; Riethmuller, M.L.; Gameiro da Silva, M.C. Flowfield characterization in thenwake of a low-velocity heated sphere anemometer. Exp. Fluids 2002, 32, 645–651. [Google Scholar] [CrossRef]
- Ormierès, D.; Provansal, M. Transition to Turbulence in the Wake of a Sphere. Phys. Rev. Lett. 1999, 83, 80–83. [Google Scholar] [CrossRef]
- Fiszdon, W. Flight Mechanics. Part I; PWN: Warsaw, Poland, 1952. [Google Scholar]
- Bretsznajder, S. Properties of Gases and Liquids; WN-T: Warsaw, Poland, 1962. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miś, T.A. Experimental Estimation of Kinematic Viscosity of Low-Density Air Using Optically Derived Macroscopic Transient Flow Parameters. Sensors 2025, 25, 3375. https://doi.org/10.3390/s25113375
Miś TA. Experimental Estimation of Kinematic Viscosity of Low-Density Air Using Optically Derived Macroscopic Transient Flow Parameters. Sensors. 2025; 25(11):3375. https://doi.org/10.3390/s25113375
Chicago/Turabian StyleMiś, Tomasz Aleksander. 2025. "Experimental Estimation of Kinematic Viscosity of Low-Density Air Using Optically Derived Macroscopic Transient Flow Parameters" Sensors 25, no. 11: 3375. https://doi.org/10.3390/s25113375
APA StyleMiś, T. A. (2025). Experimental Estimation of Kinematic Viscosity of Low-Density Air Using Optically Derived Macroscopic Transient Flow Parameters. Sensors, 25(11), 3375. https://doi.org/10.3390/s25113375