Review on Multispectral Photoacoustic Imaging Using Stimulated Raman Scattering Light Sources
Abstract
:1. Introduction
2. Principles
2.1. Principles of Photoacoustic Imaging
2.2. Principles of Stimulated Raman Scattering
3. SRS Light Source in the Visible Spectral Region
4. SRS Light Source at the Near-Infrared Spectral Region
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, M.; Wang, L.V. Photoacoustic Imaging in Biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef]
- Kim, C.; Favazza, C.; Wang, L.V. In Vivo Photoacoustic Tomography of Chemicals: High-Resolution Functional and Molecular Optical Imaging at New Depths. Chem. Rev. 2010, 110, 2756–2782. [Google Scholar] [CrossRef]
- Beard, P. Biomedical Photoacoustic Imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Bell, A.G. The Photophone. Science 1880, 1, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, J.; Kim, H.-H.; Kim, C.-S.; Kim, J. Review on Optical Imaging Techniques for Multispectral Analysis of Nanomaterials. Nanotheranostics 2022, 6, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, J.E. Basic Physics of Ultrasound Imaging. Crit. Care. Med. 2007, 35, S131–S137. [Google Scholar] [CrossRef]
- Park, B.; Oh, D.; Kim, J.; Kim, C. Functional Photoacoustic Imaging: From Nano-and Micro-to Macro-Scale. Nano Converg. 2023, 10, 29. [Google Scholar] [CrossRef]
- Li, M.; Tang, Y.; Yao, J. Photoacoustic Tomography of Blood Oxygenation: A Mini Review. Photoacoustics 2018, 10, 65–73. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Knieling, F.; Clingman, B.; Bohndiek, S.; Wang, L.V.; Kim, C. Clinical Translation of Photoacoustic Imaging. Nat. Rev. Bioeng. 2025, 3, 193–212. [Google Scholar] [CrossRef]
- Lee, C.; Cho, S.; Lee, D.; Lee, J.; Park, J.-I.; Kim, H.-J.; Park, S.H.; Choi, W.; Kim, U.; Kim, C. Panoramic Volumetric Clinical Handheld Photoacoustic and Ultrasound Imaging. Photoacoustics 2023, 31, 100512. [Google Scholar] [CrossRef]
- Dima, A.; Ntziachristos, V. In-Vivo Handheld Optoacoustic Tomography of the Human Thyroid. Photoacoustics 2016, 4, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Taruttis, A.; Timmermans, A.C.; Wouters, P.C.; Kacprowicz, M.; van Dam, G.M.; Ntziachristos, V. Optoacoustic Imaging of Human Vasculature: Feasibility by using a Handheld Probe. Radiology 2016, 281, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, I.; Huland, D.M.; Vermesh, O.; Frostig, H.E.; Tummers, W.S.; Gambhir, S.S. Photoacoustic Clinical Imaging. Photoacoustics 2019, 14, 77–98. [Google Scholar] [CrossRef]
- Attia, A.B.E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.; Bi, R.; Ntziachristos, V.; Olivo, M. A Review of Clinical Photoacoustic Imaging: Current and Future Trends. Photoacoustics 2019, 16, 100144. [Google Scholar] [CrossRef]
- Choi, W.; Park, E.-Y.; Jeon, S.; Kim, C. Clinical Photoacoustic Imaging Platforms. Biomed. Eng. Lett. 2018, 8, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, E.-Y.; Park, B.; Choi, W.; Lee, K.J.; Kim, C. Towards Clinical Photoacoustic and Ultrasound Imaging: Probe Improvement and Real-Time Graphical User Interface. Exp. Biol. Med. 2020, 245, 321–329. [Google Scholar] [CrossRef]
- Ivankovic, I.; Merčep, E.; Schmedt, C.-G.; Deán-Ben, X.L.; Razansky, D. Real-Time Volumetric Assessment of the Human Carotid Artery: Handheld Multispectral Optoacoustic Tomography. Radiology 2019, 291, 45–50. [Google Scholar] [CrossRef]
- Paul, S.; Mulani, S.; Daimary, N.; Singh, M.S. Simplified-Delay-Multiply-and-Sum-based Promising Beamformer for Real-Time Photoacoustic Imaging. IEEE Trans. Instrum. Meas. 2022, 71, 4006509. [Google Scholar] [CrossRef]
- Kim, J.; Park, B.; Ha, J.; Steinberg, I.; Hooper, S.M.; Jeong, C.; Park, E.-Y.; Choi, W.; Liang, T.; Bae, J.-S.; et al. Multiparametric Photoacoustic Analysis of Human Thyroid Cancers In Vivo. Cancer Res. 2021, 81, 4849–4860. [Google Scholar] [CrossRef]
- Roll, W.; Markwardt, N.A.; Masthoff, M.; Helfen, A.; Claussen, J.; Eisenblätter, M.; Hasenbach, A.; Hermann, S.; Karlas, A.; Wildgruber, M. Multispectral Optoacoustic Tomography of Benign and Malignant Thyroid Disorders—A Pilot Study. J. Nucl. Med. 2019, 60, 1461–1466. [Google Scholar] [CrossRef]
- Noltes, M.E.; Bader, M.; Metman, M.J.; Vonk, J.; Steinkamp, P.J.; Kukačka, J.; Westerlaan, H.E.; Dierckx, R.A.; van Hemel, B.M.; Brouwers, A.H. Towards In Vivo Characterization of Thyroid Nodules Suspicious for Malignancy using Multispectral Optoacoustic Tomography. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2736–2750. [Google Scholar] [CrossRef] [PubMed]
- Schoustra, S.M.; Piras, D.; Huijink, R.; Op’t Root, T.J.; Alink, L.; Kobold, W.M.F.; Steenbergen, W.; Manohar, S. Twente Photoacoustic Mammoscope 2: System Overview and Three-Dimensional Vascular Network Images in Healthy Breasts. J. Biomed. Opt. 2019, 24, 121909. [Google Scholar] [CrossRef] [PubMed]
- Kothapalli, S.-R.; Sonn, G.A.; Choe, J.W.; Nikoozadeh, A.; Bhuyan, A.; Park, K.K.; Cristman, P.; Fan, R.; Moini, A.; Lee, B.C.; et al. Simultaneous Transrectal Ultrasound and Photoacoustic Human Prostate Imaging. Sci. Transl. Med. 2019, 11, eaav2169. [Google Scholar] [CrossRef]
- Park, B.; Bang, C.H.; Lee, C.; Han, J.H.; Choi, W.; Kim, J.; Park, G.S.; Rhie, J.W.; Lee, J.H.; Kim, C. 3D Wide-Field Multispectral Photoacoustic Imaging of Human Melanomas In Vivo: A Pilot Study. J. Eur. Acad. Dermatol. 2020, 35, 669–676. [Google Scholar] [CrossRef]
- Choi, W.; Park, B.; Choi, S.; Oh, D.; Kim, J.; Kim, C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem. Rev. 2023, 123, 7379–7419. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Swartchick, C.B.; Chan, J. Targeted Contrast Agents and Activatable Probes for Photoacoustic Imaging of Cancer. Chem. Soc. Rev. 2022, 51, 829–868. [Google Scholar] [CrossRef]
- Han, S.; Lee, D.; Kim, S.; Kim, H.-H.; Jeong, S.; Kim, J. Contrast Agents for Photoacoustic Imaging: A Review Focusing on the Wavelength Range. Biosensors 2022, 12, 594. [Google Scholar] [CrossRef]
- Singh, S.; Giammanco, G.; Hu, C.-H.; Bush, J.; Cordova, L.S.; Lawrence, D.J.; Moran, J.L.; Chitnis, P.V.; Veneziano, R. Size-Tunable ICG-based Contrast Agent Platform for Targeted Near-Infrared Photoacoustic Imaging. Photoacoustics 2022, 29, 100437. [Google Scholar] [CrossRef]
- Kilian, H.I.; Ma, C.; Zhang, H.; Chen, M.; Nilam, A.; Quinn, B.; Tang, Y.; Xia, J.; Yao, J.; Lovell, J.F. Intraperitoneal Administration for Sustained Photoacoustic Contrast Agent Imaging. Photoacoustics 2022, 28, 100406. [Google Scholar] [CrossRef]
- Jiang, Z.; Ding, Y.; Lovell, J.F.; Zhang, Y. Design and Application of Organic Contrast Agents for Molecular Imaging in the Second Near Infrared (NIR-II) Window. Photoacoustics 2022, 28, 100426. [Google Scholar] [CrossRef]
- Park, B.; Park, S.; Kim, J.; Kim, C. Listening to Drug Delivery and Responses via Photoacoustic Imaging. Adv. Drug Deliv. Rev. 2022, 184, 114235. [Google Scholar] [CrossRef]
- Miao, W.; Shim, G.; Kim, G.; Lee, S.; Lee, H.-J.; Kim, Y.B.; Byun, Y.; Oh, Y.-K. Image-Guided Synergistic Photothermal Therapy using Photoresponsive Imaging Agent-Loaded Graphene-Based Nanosheets. J. Control. Release 2015, 211, 28–36. [Google Scholar] [CrossRef]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging From Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Yang, J.; Lee, S.Y.; Kim, J.; Lee, J.; Kim, W.J.; Lee, S.; Kim, C. Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT). Adv. Sci. 2023, 10, 2202089. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Hu, P.; Tong, X.; Na, S.; Cao, R.; Yuan, X.; Garrett, D.C.; Shi, J.; Maslov, K.; Wang, L.V. High-Speed Three-Dimensional Photoacoustic Computed Tomography for Preclinical Research and Clinical Translation. Nat. Commun. 2021, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Huda, K.; Wu, C.; Sider, J.G.; Bayer, C.L. Spherical-View Photoacoustic Tomography for Monitoring in vivo Placental Function. Photoacoustics 2020, 20, 100209. [Google Scholar] [CrossRef]
- Park, J.; Park, B.; Kim, T.; Jung, S.; Choi, W.; Ahn, J.; Yoon, D.; Kim, J.; Jeon, S.; Lee, D. Quadruple Ultrasound, Photoacoustic, Optical Coherence, and Fluorescence Fusion Imaging with a Transparent Ultrasound Transducer. Proc. Natl. Acad. Sci. USA 2021, 118, e1920879118. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic Microscopy. Laser Photonics Rev. 2013, 7, 758–778. [Google Scholar] [CrossRef]
- Nasiriavanaki, M.; Xia, J.; Wan, H.; Bauer, A.Q.; Culver, J.P.; Wang, L.V. High-Resolution Photoacoustic Tomography of Resting-State Functional Connectivity in the Mouse Brain. Proc. Natl. Acad. Sci. USA 2014, 111, 21–26. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Park, S.; Cho, S.; Yoo, J.; Kim, C.; Kim, J. Ultrasound-Guided Breath-Compensation in Single-Element Photoacoustic Imaging for Three-Dimensional Whole-Body Images of Mice. Front. Phys. 2022, 10, 457. [Google Scholar] [CrossRef]
- Park, E.-Y.; Park, S.; Lee, H.; Kang, M.; Kim, C.; Kim, J. Simultaneous Dual-Modal Multispectral Photoacoustic and Ultrasound Macroscopy for Three-Dimensional Whole-Body Imaging of Small Animals. Photonics 2021, 8, 13. [Google Scholar] [CrossRef]
- Jeon, M.; Kim, J.; Kim, C. Multiplane Spectroscopic Whole-Body Photoacoustic Imaging of Small Animals In Vivo. Med. Biol. Eng. Comput. 2016, 54, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, N.; Li, T.; Zhang, J.; Lin, R.; Gong, X.; Song, L.; Liu, Z.; Liu, C. Motion Correction in Optical Resolution Photoacoustic Microscopy. IEEE T. Med. Imaging 2019, 38, 2139–2150. [Google Scholar] [CrossRef]
- Qin, W.; Jin, T.; Guo, H.; Xi, L. Large-Field-of-View Optical Resolution Photoacoustic Microscopy. Opt. Express 2018, 26, 4271–4278. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, C.; Park, K.; Lim, G.; Kim, C. Fast Optical-Resolution Photoacoustic Microscopy using a 2-Axis Water-Proofing MEMS Scanner. Sci. Rep. 2015, 5, 7932. [Google Scholar] [CrossRef]
- Silverman, R.H.; Kong, F.; Chen, Y.; Lloyd, H.O.; Kim, H.H.; Cannata, J.M.; Shung, K.K.; Coleman, D.J. High-Resolution Photoacoustic Imaging of Ocular Tissues. Ultrasound Med. Biol. 2010, 36, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, D.; Lim, H.; Yang, H.; Kim, J.; Kim, J.; Kim, Y.; Kim, H.H.; Kim, C. Deep Learning Alignment of Bidirectional Raster Scanning in High Speed Photoacoustic Microscopy. Sci. Rep. 2022, 12, 16238. [Google Scholar] [CrossRef]
- Ly, C.D.; Vo, T.H.; Mondal, S.; Park, S.; Choi, J.; Vu, T.T.H.; Kim, C.-S.; Oh, J. Full-View In Vivo Skin and Blood Vessels Profile Segmentation in Photoacoustic Imaging based on Deep Learning. Photoacoustics 2022, 25, 100310. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, J.Y.; Choi, W.; Kim, C. High-Resolution Functional Photoacoustic Monitoring of Vascular Dynamics in Human Fingers. Photoacoustics 2021, 23, 100282. [Google Scholar] [CrossRef]
- Ning, B.; Kennedy, M.J.; Dixon, A.J.; Sun, N.; Cao, R.; Soetikno, B.T.; Chen, R.; Zhou, Q.; Shung, K.K.; Hossack, J.A. Simultaneous Photoacoustic Microscopy of Microvascular Anatomy, Oxygen Saturation, and Blood Flow. Opt. Lett. 2015, 40, 910–913. [Google Scholar] [CrossRef]
- Agarwal, A.; Huang, S.; O’Donnell, M.; Day, K.; Day, M.; Kotov, N.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701. [Google Scholar] [CrossRef]
- Cao, R.; Kilroy, J.P.; Ning, B.; Wang, T.; Hossack, J.A.; Hu, S. Multispectral Photoacoustic Microscopy based on an Optical–Acoustic Objective. Photoacoustics 2015, 3, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Piao, Z.; Ma, T.; Li, J.; Wiedmann, M.T.; Huang, S.; Yu, M.; Kirk Shung, K.; Zhou, Q.; Kim, C.-S.; Chen, Z. High Speed Intravascular Photoacoustic Imaging with Fast Optical Parametric Oscillator Laser at 1. 7 μm. Appl. Phys. Lett. 2015, 107, 083701. [Google Scholar] [CrossRef]
- Mallidi, S.; Larson, T.; Tam, J.; Joshi, P.P.; Karpiouk, A.; Sokolov, K.; Emelianov, S. Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer. Nano Lett. 2009, 9, 2825–2831. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.-J.; Jeong, E.J.; Jung, M.Y.; Lee, S.; Kim, B.K.; Song, D.H. Gain-Switched Ti: Sapphire Laser-based Photoacoustic Imaging. Appl. Opt. 2016, 55, 5419–5422. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Jeong, E.-J.; Song, H.-W.; Ahn, C.-G.; Noh, H.W.; Sim, J.Y.; Song, D.H.; Jeon, M.Y.; Lee, S.; Kim, H. Photoacoustic Imaging Probe for Detecting Lymph Nodes and Spreading of Cancer at Various Depths. J. Biomed. Opt. 2017, 22, 091513. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Guo, C.; Yu, H.-B.; Wang, Z.-M.; Zuo, J.-W.; Xia, Y.-Q.; Bian, Q.; Bo, Y.; Gao, H.-W.; Guo, Y.-D. High Pulse Energy, High Beam Quality Microsecond-Pulse Ti: Sapphire Laser at 819. 7 nm. Appl. Phys. B 2017, 123, 94. [Google Scholar] [CrossRef]
- Lee, C.; Jeon, M.; Jeon, M.Y.; Kim, J.; Kim, C. In Vitro Photoacoustic Measurement of Hemoglobin Oxygen Saturation using a Single Pulsed Broadband Supercontinuum Laser Source. Appl. Opt. 2014, 53, 3884–3889. [Google Scholar] [CrossRef]
- Dasa, M.K.; Nteroli, G.; Bowen, P.; Messa, G.; Feng, Y.; Petersen, C.R.; Koutsikou, S.; Bondu, M.; Moselund, P.M.; Podoleanu, A. All-Fibre Supercontinuum Laser for in vivo Multispectral Photoacoustic Microscopy of Lipids in the Extended Near-Infrared Region. Photoacoustics 2020, 18, 100163. [Google Scholar] [CrossRef]
- Shu, X.; Bondu, M.; Dong, B.; Podoleanu, A.; Leick, L.; Zhang, H.F. Single All-Fiber-based Nanosecond-Pulsed Supercontinuum Source for Multispectral Photoacoustic Microscopy and Optical Coherence Tomography. Opt. Lett. 2016, 41, 2743–2746. [Google Scholar] [CrossRef]
- Wang, K.; Li, C.; Chen, R.; Shi, J. Recent Advances in High-Speed Photoacoustic Microscopy. Photoacoustics 2021, 24, 100294. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, S.M.; Park, J.; Cho, S.-W.; Han, S.; Ahn, J.; Cho, S.; Kim, C.; Kim, C.-S.; Kim, J. Transportable Multispectral Optical-Resolution Photoacoustic Microscopy using Stimulated Raman Scattering Spectrum. IEEE Trans. Instrum. Meas. 2024, 73, 4502309. [Google Scholar] [CrossRef]
- Wang, L.; Maslov, K.; Yao, J.; Rao, B.; Wang, L.V. Fast Voice-Coil Scanning Optical-Resolution Photoacoustic Microscopy. Opt. Lett. 2011, 36, 139–141. [Google Scholar] [CrossRef]
- Hu, S.; Maslov, K.; Wang, L.V. Second-Generation Optical-Resolution Photoacoustic Microscopy with Improved Sensitivity and Speed. Opt. Lett. 2011, 36, 1134–1136. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.-i. Biomedical Optics: Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sehgal, C.M.; Greenleaf, J.F. Scattering of Ultrasound by Tissues. Ultrason. Imaging 1984, 6, 60–80. [Google Scholar] [CrossRef]
- Algorri, J.F.; Ochoa, M.; Roldan-Varona, P.; Rodriguez-Cobo, L.; López-Higuera, J.M. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers 2021, 13, 3484. [Google Scholar] [CrossRef] [PubMed]
- Keshava, N. A Survey of Spectral Unmixing Algorithms. Linc. Lab. J. 2003, 14, 55–78. [Google Scholar]
- Baksalary, O.M.; Trenkler, G. The Moore–Penrose Inverse: A Hundred Years on a Frontline of Physics Research. Eur. Phys. J. H 2021, 46, 9. [Google Scholar] [CrossRef]
- Arabul, M.; Rutten, M.; Bruneval, P.; van Sambeek, M.; van de Vosse, F.; Lopata, R. Unmixing Multi-Spectral Photoacoustic Sources in Human Carotid Plaques using Non-Negative Independent Component Analysis. Photoacoustics 2019, 15, 100140. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhong, F.; Hu, S. Temporal and Spectral Unmixing of Photoacoustic Signals by Deep Learning. Opt. Lett. 2021, 46, 2690–2693. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, L.; You, H.; Wu, H.; Zhao, Q.; Dong, X.; Bai, S.; He, H.; Dong, J. Dual-Wavelength, Nanosecond, Miniature Raman Laser Enables Efficient Photoacoustic Differentiation of Water and Lipid. APL Photonics 2024, 9, 096104. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics: Its History and Recent Progress. J. Opt. Soc. Am. B 2011, 28, A1–A10. [Google Scholar] [CrossRef]
- Supradeepa, V.; Feng, Y.; Nicholson, J.W. Raman Fiber Lasers. J. Opt. 2017, 19, 023001. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, in Nonlinear Science at the Dawn of the 21st Century; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–211. [Google Scholar]
- Zijlstra, W.; Buursma, A.; Meeuwsen-Van der Roest, W. Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin. Clin. Chem. 1991, 37, 1633–1638. [Google Scholar] [CrossRef]
- Cho, S.-W.; Kang, H.; Park, S.M.; Lim, G.; Piao, Z.; Lee, S.-W.; Kim, C.-S.; Lee, T.G. Optimal Generation of Ten Individual Green-to-Red Raman Source for Wavelength-Dependent Real-Time OR-PAM Images. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1400109. [Google Scholar] [CrossRef]
- Koeplinger, D.; Liu, M.; Buma, T. Photoacoustic Microscopy with a Pulsed Multi-Color Source based on Stimulated Raman Scattering. In Proceedings of the IEEE International Ultrasonics Symposium 2011, Orlando, FL, USA, 18–21 October 2011. [Google Scholar]
- Loya, A.K.; Dumas, J.; Buma, T. Photoacoustic Microscopy with a Tunable Source based on Cascaded Stimulated Raman Scattering in a Large-Mode Area Photonic Crystal Fiber. In Proceedings of the IEEE International Ultrasonics Symposium 2012, Dresden, Germany, 7–10 October 2012. [Google Scholar]
- Strohm, E.M.; Moore, M.J.; Kolios, M.C. High Resolution Ultrasound and Photoacoustic Imaging of Single Cells. Photoacoustics 2016, 4, 36–42. [Google Scholar] [CrossRef]
- Bui, N.Q.; Cho, S.-W.; Moorthy, M.S.; Park, S.M.; Piao, Z.; Nam, S.Y.; Kang, H.W.; Kim, C.-S.; Oh, J. In Vivo Photoacoustic Monitoring using 700-nm Region Raman Source for Targeting Prussian Blue Nanoparticles in Mouse Tumor Model. Sci. Rep. 2018, 8, 2000. [Google Scholar] [CrossRef]
- Hajireza, P.; Forbrich, A.; Zemp, R. In-Vivo Functional Optical-Resolution Photoacoustic Microscopy with Stimulated Raman Scattering Fiber-Laser Source. Biomed. Opt. Express 2014, 5, 539–546. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, Q.; DiSpirito, A.; Vu, T.; Rong, Q.; Peng, X.; Sheng, H.; Shen, X.; Zhou, Q.; Jiang, L. Real-Time Whole-Brain Imaging of Hemodynamics and Oxygenation at Micro-Vessel Resolution with Ultrafast Wide-Field Photoacoustic Microscopy. Light-Sci. Appl. 2022, 11, 138. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Li, X.; Zhu, J.; Li, D.; Li, S.; Lee, C.-S.; Wang, L. Confocal Visible/NIR Photoacoustic Microscopy of Tumors with Structural, Functional, and Nanoprobe Contrasts. Photonics Res. 2020, 8, 1875–1880. [Google Scholar] [CrossRef]
- Liu, C.; Liang, Y.; Wang, L. Single-Shot Photoacoustic Microscopy of Hemoglobin Concentration, Oxygen Saturation, and Blood Flow in Sub-Microseconds. Photoacoustics 2020, 17, 100156. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Qu, Z.; Amjadian, M.; Tang, X.; Chen, J.; Wang, L. All-Fiber Three-Wavelength Laser for Functional Photoacoustic Microscopy. Photoacoustics 2025, 42, 100703. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Y.; He, L.; Liang, Y.; Wang, L. Wide-Field Polygon-Scanning Photoacoustic Microscopy of Oxygen Saturation at 1-MHz A-Line Rate. Photoacoustics 2020, 20, 100195. [Google Scholar] [CrossRef]
- Park, S.M.; Cho, S.-W.; Kim, B.-M.; Lee, T.G.; Kim, C.-S.; Lee, S.-W. Quickly Alternating Green and Red Laser Source for Real-Time Multispectral Photoacoustic Microscopy. Photoacoustics 2020, 20, 100204. [Google Scholar] [CrossRef]
- Buma, T.; Wilkinson, B.C.; Sheehan, T.C. Near-Infrared Spectroscopic Photoacoustic Microscopy using a Multi-Color Fiber Laser Source. Biomed. Opt. Express 2015, 6, 2819–2829. [Google Scholar] [CrossRef]
- Wilkinson, B.C.; Sheehan, T.C.; Buma, T. Spectroscopic Photoacoustic Microscopy in the 1064–1300 nm Range using a Pulsed Multi-Color Source based on Stimulated Raman Scattering. In Proceedings of the IEEE International Ultrasonics Symposium 2014, Chicago, IL, USA, 3–6 September 2014. [Google Scholar]
- Choi, S.W.; Buma, T. Injection-Seeded Raman Fiber Amplifier for Photoacoustic Microscopy of Lipids. In Proceedings of the IEEE International Ultrasonics Symposium 2016, Tours, France, 18–21 September 2016. [Google Scholar]
- Lee, H.; Seeger, M.R.; Lippok, N.; Nadkarni, S.K.; van Soest, G.; Bouma, B.E. Nanosecond SRS Fiber Amplifier for Label-Free Near-Infrared Photoacoustic Microscopy of Lipids. Photoacoustics 2022, 25, 100331. [Google Scholar] [CrossRef]
- Lee, H.; Seeger, M.R.; Bouma, B.E. Electronically Controlled Dual-Wavelength Switchable SRS Fiber Amplifier in the NIR-II Region for Multispectral Photoacoustic Microscopy. Laser Photonics Rev. 2024, 18, 2400144. [Google Scholar] [CrossRef]
- Park, S.M.; Bak, S.; Kim, G.H.; Kim, C.S.; Cho, S.W.; Bouma, B.E.; Lee, H. Wavelength-Switchable Synchronously Pumped Raman Fiber Laser Near 1. 7 µm for Multispectral Photoacoustic Microscopy. Laser Photonics Rev. 2025, 19, 2401080. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.; Yang, J.-M.; Gao, L.S.; Maslov, K.I.; Wang, L.V.; Huang, C.-H.; Zou, J. Wide-Field Fast-Scanning Photoacoustic Microscopy based on a Water-Immersible MEMS Scanning Mirror. J. Biomed. Opt. 2012, 17, 080505. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Zhang, Y.; Zhu, J.; Wang, L. Five-Wavelength Optical-Resolution Photoacoustic Microscopy of Blood and Lymphatic Vessels. Adv. Photonics 2021, 3, 016002. [Google Scholar] [CrossRef]
- Wang, T.; Sun, N.; Cao, R.; Ning, B.; Chen, R.; Zhou, Q.; Hu, S. Multiparametric Photoacoustic Microscopy of the Mouse Brain with 300-kHz A-Line Rate. Neurophotonics 2016, 3, 045006. [Google Scholar] [CrossRef] [PubMed]
- Hosseinaee, Z.; Ecclestone, B.; Pellegrino, N.; Khalili, L.; Mukhangaliyeva, L.; Fieguth, P.; Reza, P.H. Functional Photoacoustic Remote Sensing Microscopy using a Stabilized Temperature-Regulated Stimulated Raman Scattering Light Source. Opt. Express 2021, 29, 29745–29754. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-D.; Kim, Y.H.; Park, J.-H.; Yim, S.-Y.; Jeong, M.S. Note: Automatic Laser-to-Optical-Fiber Coupling System based on Monitoring of Raman Scattering Signal. Rev. Sci. Instrum. 2012, 83, 096104. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kye, H.; Kim, C.-S.; Kim, T.-K.; Yoo, J.; Kim, J. Automated Laser-Fiber Coupling Module for Optical-Resolution Photoacoustic Microscopy. Sensors 2023, 23, 6643. [Google Scholar] [CrossRef]
- Yang, J.; Choi, S.; Kim, J.; Lee, J.; Kim, W.J.; Kim, C. Multiplane Spectroscopic Whole-Body Photoacoustic Computed Tomography of Small Animals In Vivo. Laser Photonics Rev. 2024, 19, 2400672. [Google Scholar] [CrossRef]
Spectral Region | Type | [nm] | [kW] | PRR [kHz] | [nm] | [nJ] | Target | Ref. |
---|---|---|---|---|---|---|---|---|
Visible | SRS | 532 | - | - | 532, 600 | 1–5 | Wright–Giemsa stain | [80] |
532 | 8.89 | 5 | 532, 700 | 300 | Hemoglobin, PB NPs | [81] | ||
532 | 1.875 | 40 | 532, 545, 560, 590 | 300–500 | Hemoglobin | [82] | ||
532 | - | 800 | 532, 558 | 200 | Hemoglobin | [83] | ||
532 | - | 4 | 532, 545, 558 | 100 | Hemoglobin | [85] | ||
532 | - | 1000 | 532, 558 | 64–85 | Hemoglobin | [87] | ||
Polarization- modulated SRS | 532 | 1.5 | 300 | 532, 655 | 200 | Hemoglobin, AuNRs | [88] | |
NIR | SRS | 1064 | 13.7 | 7.4 | 1064, 1100, 1175, 1225, 1275, 1325 | - | Lipid phantom | [90] |
Injection-seeded SRS | 1047 | 10 | 2.5 | 1048, 1098, 1153, 1206, 1275 | - | Drosophila larva | [91] | |
1068 | - | 200 | 1192 | 467 | White adipocytes | [92] | ||
1030 | - | 200 | 1168, 1202 | 271 | PE, PI, PP | [93] | ||
Synchronously pumped SRS | 1580, 1590, 1600 | ~0.264 | ~130 | 1700, 1710, 1720 | 400 | PE, PI, PP | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Park, S.M.; Jeong, Y.; Kim, J.; Lee, H. Review on Multispectral Photoacoustic Imaging Using Stimulated Raman Scattering Light Sources. Sensors 2025, 25, 3325. https://doi.org/10.3390/s25113325
Song Y, Park SM, Jeong Y, Kim J, Lee H. Review on Multispectral Photoacoustic Imaging Using Stimulated Raman Scattering Light Sources. Sensors. 2025; 25(11):3325. https://doi.org/10.3390/s25113325
Chicago/Turabian StyleSong, Yuon, Sang Min Park, Yongjae Jeong, Jeesu Kim, and Hwidon Lee. 2025. "Review on Multispectral Photoacoustic Imaging Using Stimulated Raman Scattering Light Sources" Sensors 25, no. 11: 3325. https://doi.org/10.3390/s25113325
APA StyleSong, Y., Park, S. M., Jeong, Y., Kim, J., & Lee, H. (2025). Review on Multispectral Photoacoustic Imaging Using Stimulated Raman Scattering Light Sources. Sensors, 25(11), 3325. https://doi.org/10.3390/s25113325