Hwang, S.; Kwon, N.; Lee, D.; Kim, J.; Yang, S.; Youn, I.; Moon, H.-J.; Sung, J.-K.; Han, S.
A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model. Sensors 2025, 25, 3309.
https://doi.org/10.3390/s25113309
AMA Style
Hwang S, Kwon N, Lee D, Kim J, Yang S, Youn I, Moon H-J, Sung J-K, Han S.
A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model. Sensors. 2025; 25(11):3309.
https://doi.org/10.3390/s25113309
Chicago/Turabian Style
Hwang, Soree, Nayeon Kwon, Dongwon Lee, Jongman Kim, Sumin Yang, Inchan Youn, Hyuk-June Moon, Joon-Kyung Sung, and Sungmin Han.
2025. "A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model" Sensors 25, no. 11: 3309.
https://doi.org/10.3390/s25113309
APA Style
Hwang, S., Kwon, N., Lee, D., Kim, J., Yang, S., Youn, I., Moon, H.-J., Sung, J.-K., & Han, S.
(2025). A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model. Sensors, 25(11), 3309.
https://doi.org/10.3390/s25113309