Gamma-Ray Analysis of Reed Samples from the Danube Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Processing and Analysis
3. Results
3.1. Specific Activities and Normalized Values
3.2. Neutron-Induced Emissions
3.3. Covariance and Clustering
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, M.; Eguchi, T.; Azuma, K.; Nakao, A.; Kubo, K.; Fujimura, S.; Syaifudin, M.; Maruyama, H.; Watanabe, T.; Shinano, T. The ratio of plant 137Cs to exchangeable 137Cs in soil is a crucial factor in explaining the variation in 137Cs transferability from soil to plant. Sci. Total Environ. 2023, 857, 159208. [Google Scholar] [CrossRef] [PubMed]
- Tamaoki, M.; Yabe, T.; Furukawa, J.; Watanabe, M.; Ikeda, K.; Yasutani, I.; Nishizawa, T. Comparison of Potentials of Higher Plants for Phytoremediation of Radioactive Cesium from Contaminated Soil. Environ. Control Biol. 2016, 54, 65–69. [Google Scholar] [CrossRef]
- Cinelli, G.; De Cort, M.; Tollefsen, T. (Eds.) European Atlas of Natural Radiation; Publication Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Sources and Effects of Ionizing Radiation; Report to the General Assembly, with Scientific Annexes; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 2000; ISBN 92-1-142238-8.
- El-Reefy, H.I.; Sharshar, T.; Zaghloul, R.; Badran, H.M. Distribution of gamma-ray emitting radionuclides in the environment of Burullus Lake: I. Soils and vegetations. J. Environ. Radioact. 2006, 87, 148–169. [Google Scholar] [CrossRef]
- Djelic, G.; Krstic, D.; Stajic, J.M.; Milenkovic, B.; Topuzovic, M.; Nikezic, D.; Vucic, D.; Zeremski, T.; Stankovic, M.; Kostic, D. Transfer factors of natural radionuclides and 137Cs from soil to plants used in traditional medicine in central Serbia. J. Environ. Radioact. 2016, 158, 81–88. [Google Scholar] [CrossRef]
- Galhardi, J.A.; García-Tenorio, R.; Bonotto, D.M.; Francés, I.D.; Motta, J.G. Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil. J. Environ. Radioact. 2017, 177, 37–47. [Google Scholar] [CrossRef]
- Saenboonruang, K.; Phonchanthuek, E.; Prasandee, K. Soil-to-plant transfer factors of natural radionuclides (226Ra and 40K) in selected Thai medicinal plants. J. Environ. Radioact. 2018, 184, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tsvetnova, O.G.; Shcheglov, A.; Klyashtorin, A. 137Cs and K annual fluxes in a cropland and forest ecosystems twenty-four years after the Chernobyl accident. J. Environ. Radioact. 2018, 195, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Charro, E.; Moyano, A. Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site. Radiat. Phys. Chem. 2017, 141, 200–206. [Google Scholar] [CrossRef]
- Khan, H.M.; Ismail, M.; Khan, K.; Akhter, P. Measurement of radionuclides and gamma-ray dose rate in soil and transfer of radionuclides from soil to vegetation, vegetable of some Northern area of Pakistan using γ-ray spectrometry. Water Air Soil Pollut. 2011, 219, 129–142. [Google Scholar] [CrossRef]
- Tsabaris, C.; Androulakaki, E.G.; Ballas, D.; Alexakis, S.; Perivoliotis, L.; Iona, A. Radioactivity Monitoring at North Aegean Sea Integrating In-Situ Sensor in an Ocean Observing Platform. J. Mar. Sci. Eng. 2021, 9, 77. [Google Scholar] [CrossRef]
- Olacel, A.; Ujeniuc, S.; Suvaila, R.; Alexandrescu, B.; Pojar, I. Isotopic patterns via neutron irradiation and gamma spectrometry of environmental samples. Chem. Phys. Impact 2022, 4, 100065. [Google Scholar] [CrossRef]
- Driga, B. Delta Dunării, Sistemul de Circulație Apei; Editura Casa Cărții De Știință: Cluj Napoca, Romania, 2004; p. 256. [Google Scholar]
- Botnariuc, N. Fluxul de Energie din Ghiolurile Puiu, Roşu, Porcu şi Potenţialul lor Bioproductiv; St. com. ecol. Delta Dunării: Tulcea, Romania, 1985; Volume 1, pp. 9–14. [Google Scholar]
- Coteț, P. Evoluția Morfohidrografică Deltei Dunării—O Sinteză A Studiilor Existente Și O Nouă Interpretare. Probl. Geogr. 1960, 7, 53–81. [Google Scholar]
- SR EN ISO 5661–1; Water Quality. Part 1, General Guidelines for Establishing Sampling Programs and Techniques. ISS: Belgrade, Serbia, 2008.
- Covaliov, S.; Doroftei, M.; Dumitrița, S.; Hanganu, C.J. Reedbeds in the Danube Delta, National Institute for Research and Development of the Danube Delta; C.I.T.D.D.—Danube Delta Technological Information Center: Tulcea, Romania, 2023; 186p. [Google Scholar]
- Suvaila, R.; Sima, O.; Osvath, I. Improved method for the assessment of Co-60 and Cs-134 point sources in samples with non-homogeneous matrix. Appl. Radiat. Isot. 2014, 87, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Suvaila, R.; Osvath, I.; Sima, O. Improving the assessment of activity in samples with non-uniform distribution using the sum peak count rate. Appl. Radiat. Isot. 2013, 81, 76–80. [Google Scholar] [CrossRef]
- Suvaila, R.; Stancu, E.; Sima, O. On within sample homogeneity testing using gamma-ray spectrometry. Appl. Radiat. Isot. 2012, 70, 2144–2148. [Google Scholar] [CrossRef]
- Rudescu, L.; Niculescu, C.; Chivu, I. Monography of the Danube Delta Reed; Academiei R.S.R: Cluj-Napoca, Romania, 1965; 542p. [Google Scholar]
- Currie, L.A. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 1968, 40, 586. [Google Scholar] [CrossRef]
- De Geer, L.E. Currie detection limits in gamma-ray spectroscopy. Appl. Radiat. Isot. 2004, 61, 151–160. [Google Scholar] [CrossRef] [PubMed]
- ISO 11929. Available online: https://www.iso.org/standard/69579.html (accessed on 9 April 2025).
- Addinsoft. XLSTAT Statistical and Data Analysis Solution; Addinsoft: New York, NY, USA, 2020; Available online: https://www.xlstat.com (accessed on 10 January 2025).
- Rodríguez, P.B.; Tomé, F.V.; Lozano, J.C.; Fernández, M.P. Transfer of 238U, 230Th, 226Ra, and 210Pb from soils to tree and shrub species in a Mediterranean area. Appl. Radiat. Isot. 2010, 68, 1154–1159. [Google Scholar] [CrossRef]
- Vandenhove, H.; Olyslaegers, G.; Sanzharova, N.; Shubina, O.; Reed, E.; Shang, Z.; Velasco, H. Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po. J. Environ. Radioact. 2009, 100, 721–732. [Google Scholar] [CrossRef]
- Alexandrescu, B.; Sima, O.; Ujeniuc, S.; Pojar, I.; Suvaila, R. Distribution of 222Rn decay products in a soil sample. Phys. Scr. 2023, 98, 035009. [Google Scholar] [CrossRef]
- Suvaila, R.; Ujeniuc, S.; Scrieciu, A.; Pojar, I.; Alexandrescu, B. Methodology for regularity studies by precision environmental gamma ray spectrometry. Int. J. Environ. Sci. Technol. 2024, 22, 6265–6276. [Google Scholar] [CrossRef]
Nuclide | 235U | 228Ac | 214Pb | 137Cs | 214Bi | 40K |
Energy | 144 | 338 | 352 | 662 | 1120 | 1461 |
D. L. (Bq·kg−1) | 1.8 | 3.4 | 3.5 | 4.8 | 5.2 | 5.1 |
E (keV) | 144 | 338 | 352 | 662 | 1120 | 1461 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Iγ (%) | 10.9 | U-235 | 11.27 | Ac-228 | 35.72 | Pb-214 | 85.1 | Cs-137 | 14.9 | Bi-214 | 10.77 | K-40 | ||||||||
ε × 102 | 18.8 | 9.5 | 9.2 | 5.2 | 3.5 | 3.1 | ||||||||||||||
No/Sample | Ls | u (U) | Norm | Ls | u (Ac) | Norm | Ls | u (Pb) | Norm | Ls | u (Cs) | Norm | Ls | u (Bi) | Norm | Ls | u (K) | Norm | Live (s) | Dry (g) |
1 Λs MR1 | 5.48 | 0.22 | 0.52 | 8.61 | 0.23 | 0.68 | 3.79 | 0.19 | 0.27 | 0.82 | 0.27 | 0.41 | 4.56 | 0.17 | 0.30 | 238 | 0.16 | 0.61 | 3 × 105 | 15.71 |
2 Λs GR1 | 4.49 | 0.21 | 0.43 | 6.45 | 0.22 | 0.51 | 2.58 | 0.18 | 0.18 | 0.65 | 0.26 | 0.32 | 2.50 | 0.16 | 0.17 | 244 | 0.14 | 0.62 | 3 × 105 | 18.13 |
3 Λs JR1 | 3.16 | 0.25 | 0.30 | 5.42 | 0.27 | 0.43 | 4.32 | 0.19 | 0.31 | 0.26 | 0.32 | 0.13 | 3.65 | 0.17 | 0.24 | 118 | 0.15 | 0.30 | 2 × 105 | 20.28 |
4 Λs RR1 | 0.35 | 0.29 | 0.03 | 5.53 | 0.28 | 0.44 | 10.78 | 0.19 | 0.76 | 1.80 | 0.30 | 0.90 | 11.16 | 0.17 | 0.74 | 392 | 0.16 | 1.00 | 2 × 105 | 7.20 |
5 Λs RRR | 7.54 | 0.22 | 0.72 | 4.96 | 0.26 | 0.39 | 3.07 | 0.19 | 0.22 | 0.00 | 0.26 | 0.00 | 3.18 | 0.17 | 0.21 | 123 | 0.15 | 0.31 | 2 × 105 | 18.42 |
6 Λs GS1 | 2.75 | 0.25 | 0.26 | 7.30 | 0.30 | 0.57 | 3.00 | 0.19 | 0.21 | 0.49 | 0.31 | 0.24 | 2.78 | 0.17 | 0.18 | 121 | 0.15 | 0.31 | 2 × 105 | 16.24 |
7 Λs JS1 | 2.41 | 0.29 | 0.23 | 4.95 | 0.31 | 0.39 | 5.16 | 0.21 | 0.36 | 2.01 | 0.24 | 1.00 | 6.40 | 0.19 | 0.43 | 123 | 0.16 | 0.31 | 96,600 | 16.07 |
8 Λs RS1 | 2.88 | 0.25 | 0.27 | 12.03 | 0.22 | 0.95 | 2.94 | 0.19 | 0.21 | 0.00 | LD | 0.00 | 3.48 | 0.17 | 0.23 | 133 | 0.15 | 0.34 | 2 × 105 | 20.43 |
9 Λs RRS | 3.65 | 0.24 | 0.35 | 12.32 | 0.35 | 0.97 | 4.71 | 0.25 | 0.33 | 0.00 | 0.19 | 0.00 | 5.46 | 0.20 | 0.36 | 139 | 0.15 | 0.35 | 1 × 105 | 14.17 |
10 Λs MS1 | 2.41 | 0.26 | 0.23 | 6.40 | 0.25 | 0.50 | 3.04 | 0.20 | 0.21 | 0.09 | 0.35 | 0.04 | 2.98 | 0.18 | 0.20 | 165 | 0.14 | 0.42 | 2 × 105 | 19.90 |
11 Λs GL1 | 6.25 | 0.27 | 0.59 | 9.88 | 0.28 | 0.78 | 8.47 | 0.21 | 0.60 | 1.36 | 0.32 | 0.68 | 7.76 | 0.20 | 0.52 | 147 | 0.16 | 0.38 | 80,200 | 17.15 |
12 Λs GL2 | 4.72 | 0.26 | 0.45 | 10.59 | 0.26 | 0.83 | 3.57 | 0.21 | 0.25 | 0.00 | LD | 0.00 | 3.28 | 0.19 | 0.22 | 241 | 0.15 | 0.61 | 1 × 105 | 19.48 |
13 Λs RL1 | 2.58 | 0.26 | 0.24 | 6.17 | 0.25 | 0.49 | 6.18 | 0.19 | 0.44 | 1.55 | 0.27 | 0.77 | 4.91 | 0.18 | 0.33 | 227 | 0.15 | 0.58 | 2 × 105 | 19.00 |
14 Λs RRL | 3.82 | 0.28 | 0.36 | 11.54 | 0.26 | 0.91 | 5.97 | 0.21 | 0.42 | 0.93 | 0.33 | 0.46 | 4.96 | 0.19 | 0.33 | 298 | 0.16 | 0.76 | 87,300 | 19.32 |
15 Λs JL1 | 8.77 | 0.26 | 0.83 | 7.06 | 0.30 | 0.56 | 6.41 | 0.21 | 0.45 | 0.62 | LD | 0.31 | 6.07 | 0.20 | 0.40 | 122 | 0.16 | 0.31 | 85,900 | 12.75 |
16 Λs JL2 | 7.48 | 0.24 | 0.71 | 12.70 | 0.23 | 1.00 | 6.06 | 0.19 | 0.43 | 2.01 | 0.26 | 1.00 | 6.44 | 0.17 | 0.43 | 120 | 0.15 | 0.31 | 2 × 105 | 10.94 |
17 Λs ML1 | 10.52 | 0.21 | 1.00 | 10.95 | 0.22 | 0.86 | 14.17 | 0.16 | 1.00 | 0.89 | 0.27 | 0.45 | 15.03 | 0.15 | 1.00 | 221 | 0.15 | 0.56 | 4 × 105 | 5.48 |
18 Λs ML2 | 3.50 | 0.25 | 0.33 | 5.78 | 0.32 | 0.46 | 3.33 | 0.20 | 0.24 | 0.54 | 0.31 | 0.27 | 3.72 | 0.18 | 0.25 | 242 | 0.13 | 0.62 | 2 × 105 | 18.64 |
Isotope | Minimum | Maximum | Mean | Std. Dev |
---|---|---|---|---|
U-235 | 0.033 | 1.000 | 0.437 | 0.248 |
Ac-228 | 0.390 | 1.000 | 0.650 | 0.221 |
Pb-214 | 0.182 | 1.000 | 0.383 | 0.217 |
Bi-214 | 0.166 | 1.000 | 0.363 | 0.214 |
K-40 | 0.302 | 1.000 | 0.484 | 0.198 |
Cs-137 | 0.000 | 1.000 | 0.388 | 0.350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavel, A.B.; Ujeniuc, S.; Iordache, G.; Catianis, I.; Gavrila, C.; Scrieciu, A.; Seremet, R.; Andreicovici, I.; Ise, S.; Suvaila, R. Gamma-Ray Analysis of Reed Samples from the Danube Delta. Sensors 2025, 25, 3257. https://doi.org/10.3390/s25113257
Pavel AB, Ujeniuc S, Iordache G, Catianis I, Gavrila C, Scrieciu A, Seremet R, Andreicovici I, Ise S, Suvaila R. Gamma-Ray Analysis of Reed Samples from the Danube Delta. Sensors. 2025; 25(11):3257. https://doi.org/10.3390/s25113257
Chicago/Turabian StylePavel, Ana Bianca, Sorin Ujeniuc, Gabriel Iordache, Irina Catianis, Catalina Gavrila, Albert Scrieciu, Radu Seremet, Iulian Andreicovici, Silvia Ise, and Rares Suvaila. 2025. "Gamma-Ray Analysis of Reed Samples from the Danube Delta" Sensors 25, no. 11: 3257. https://doi.org/10.3390/s25113257
APA StylePavel, A. B., Ujeniuc, S., Iordache, G., Catianis, I., Gavrila, C., Scrieciu, A., Seremet, R., Andreicovici, I., Ise, S., & Suvaila, R. (2025). Gamma-Ray Analysis of Reed Samples from the Danube Delta. Sensors, 25(11), 3257. https://doi.org/10.3390/s25113257