An Investigation of Real-Time Galileo/GPS Integrated Precise Kinematic Time Transfer Based on Galileo HAS Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. PPP Time Transfer Model
2.2. Real-Time Recovery of Precise Orbit and Clock Correction Products
3. Experimental Data and Strategy Selection
3.1. Dataset
3.2. Processing Strategy
4. Results
4.1. PPP Time Transfer in Static Model with HAS Service
4.2. PPP Time Transfer in the Kinematic Model Using HAS Service
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirchner, D. Two-way Time Transfer Via Communication Satellites. Proc. IEEE 1991, 79, 983–990. [Google Scholar] [CrossRef]
- Piester, D.; Bauch, A.; Becker, J.; Polewka, T.; McKinley, A.; Breakiron, L.; Smith, A.; Fonville, B.; Matsakis, D. Two-way satellite time transfer between USNO and PTB. In Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, Vancouver, BC, Canada, 29–31 August 2005; pp. 316–323. [Google Scholar] [CrossRef]
- Allan, D.W.; Weiss, M.A. Accurate time and frequency transfer during common-view of a GPS satellite. In Proceedings of the 1980 IEEE Frequency Control Symposium, Philadelphia, PA, USA, 28–30 May 1980; pp. 334–356. [Google Scholar] [CrossRef]
- Petit, G.; Jiang, Z. GPS All in View time transfer for TAI computation. Metrologia 2008, 45, 35–45. [Google Scholar] [CrossRef]
- Petit, G.; Jiang, Z. Precise Point Positioning for TAI Computation. Int. J. Navig. Obs. 2008, 2008, 562878. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, Q.; Wang, Y.; Lyu, D.; Cao, X.; Shen, F.; Meng, X. A new receiver clock model to enhance BDS-3 real-time PPP time transfer with the PPP-B2b service. Satell. Navig. 2023, 4, 8. [Google Scholar] [CrossRef]
- Ge, Y.; Cao, X.; Lyu, D.; He, Z.; Ye, F.; Xiao, G.; Shen, F. An investigation of PPP time transfer via BDS-3 PPP-B2b service. GPS Solut. 2023, 27, 61. [Google Scholar] [CrossRef]
- Kong, Y.; Yang, X.H.; Chang, H.; Qin, W.J.; Cao, F.; Li, Z.G.; Sun, B.Q. Method of Precise Common-View Frequency Transfer Based on BeiDou GEO Satellite. In Proceedings of the 2014 IEEE International Frequency Control Symposium (Fcs), Taipei, Taiwan, 19–22 May 2014; pp. 62–65. [Google Scholar]
- Lee, S.W.; Schutz, B.E.; Lee, C.-B.; Yang, S.H. A study on the Common-View and All-in-View GPS time transfer using carrier-phase measurements. Metrologia 2008, 45, 156–167. [Google Scholar] [CrossRef]
- Petit, G. The TAIPPP pilot experiment. In Proceedings of the 2009 Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), Besancon, France, 20–24 April 2009; Volume 1–2, pp. 116–119. [Google Scholar] [CrossRef]
- Leute, J.; Petit, G.; Exertier, P.; Samain, E.; Rovera, D.; Uhrich, P. High accuracy continuous time transfer with GPS IPPP and T2L2. In Proceedings of the 2018 European Frequency and Time Forum (EFTF), Turin, Italy, 10–12 April 2018; pp. 249–252. [Google Scholar] [CrossRef]
- Defraigne, P.; Verhasselt, K. Multi-GNSS time transfer with CGGTTS-V2E. In Proceedings of the 2018 European Frequency and Time Forum (EFTF), Torino, Italy, 10–12 April 2018; pp. 270–275. [Google Scholar] [CrossRef]
- Ge, Y.; Qin, W.; Cao, X.; Zhou, F.; Wang, S.; Yang, X. Consideration of GLONASS Inter-Frequency Code Biases in Precise Point Positioning (PPP) International Time Transfer. Appl. Sci. 2018, 8, 1254. [Google Scholar] [CrossRef]
- Ge, Y.; Zhou, F.; Dai, P.; Qin, W.; Wang, S.; Yang, X. Precise point positioning time transfer with multi-GNSS single-frequency observations. Measurement 2019, 146, 628–642. [Google Scholar] [CrossRef]
- Zhang, P.; Tu, R.; Gao, Y.; Zhang, R.; Han, J. Performance of Galileo precise time and frequency transfer models using quad-frequency carrier phase observations. GPS Solut. 2020, 24, 40. [Google Scholar] [CrossRef]
- Su, K.; Jin, S. Triple-frequency carrier phase precise time and frequency transfer models for BDS-3. GPS Solut. 2019, 23, 86. [Google Scholar] [CrossRef]
- Yao, J. Continuous GPS Carrier-Phase Time Transfer. Ph.D. Thesis, University of Colorado, Boulder, CO, USA, 2014. [Google Scholar]
- Petit, G.; Kanj, A.; Loyer, S.; Delporte, J.; Mercier, F.; Perosanz, F. 1 × 10−16 frequency transfer by GPS PPP with integer ambiguity resolution. Metrologia 2015, 52, 301–309. [Google Scholar] [CrossRef]
- Ge, Y.; Zhou, F.; Liu, T.; Qin, W.; Wang, S.; Yang, X. Enhancing real-time precise point positioning time and frequency transfer with receiver clock modeling. GPS Solut. 2018, 23, 20. [Google Scholar] [CrossRef]
- Lyu, D.; Zeng, F.; Ouyang, X.; Yu, H. Enhancing multi-GNSS time and frequency transfer using a refined stochastic model of a receiver clock. Meas. Sci. Technol. 2019, 30, 125016. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, S.; Wu, T.; Fan, C.; Qin, W.; Zhou, F.; Yang, X. An analysis of BDS-3 real-time PPP: Time transfer, positioning, and tropospheric delay retrieval. Measurement 2021, 172, 108871. [Google Scholar] [CrossRef]
- Guo, W.; Song, W.; Niu, X.; Lou, Y.; Gu, S.; Zhang, S.; Shi, C. Foundation and performance evaluation of real-time GNSS high-precision one-way timing system. GPS Solut. 2019, 23, 23. [Google Scholar] [CrossRef]
- Wu, M.; Sun, B.; Wang, Y.; Zhang, Z.; Su, H.; Yang, X. Sub-nanosecond one-way real-time time service system based on UTC. GPS Solut. 2021, 25, 44. [Google Scholar] [CrossRef]
- Ge, Y.; Qin, W.; Su, K.; Yang, X.; Ouyang, M.; Zhou, F.; Zhao, X. A new approach to real-time precise point-positioning timing with International GNSS Service real-time service products. Meas. Sci. Technol. 2019, 30, 125104. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W.; Guo, S.; Mao, Y.; Yang, Y. Introduction to BeiDou-3 navigation satellite system. Navigation 2019, 66, 7–18. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, Q.; Gao, W.; Li, J.; Xu, Y.; Sun, B. Principle and performance of BDSBAS and PPP-B2b of BDS-3. Satell. Navig. 2022, 3, 5. [Google Scholar] [CrossRef]
- Zhang, R.; Tu, R.; Lu, X.; He, Z.; Guang, W.; Xiao, G. Initial and comprehensive analysis of PPP time transfer based on Galileo high accuracy service. GPS Solut. 2024, 28, 94. [Google Scholar] [CrossRef]
- Mao, F.; Lou, Y.; Geng, C.; Song, Q.; Gong, X.; Gu, S. Evaluation of timing and time transfer with PPP using Galileo High Accuracy Service. Measurement 2024, 226, 114152. [Google Scholar] [CrossRef]
- Tu, R.; Zhang, P.; Zhang, R.; Liu, J.; Lu, X. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations. J. Geod. 2018, 93, 837–847. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions (2010); No. IERS-TN-36; Bureau International Des Poids et Mesures Sevres (France): Saint-Cloud, France, 2010. [Google Scholar]
- Zoccarato, P.; Menzione, F.; Gioia, C.; Fortuny-Guasch, J.; Ostolaza, J.; Lagrasta, S.; Psychas, D.V.; Paonni, M.; De Blas, J.; Blonsk, D.; et al. Galileo High Accuracy Service Reference User Algorithm Formulation and Verification. In Proceedings of the 37th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2024), Baltimore, MD, USA, 16–20 September 2024; pp. 2111–2122. [Google Scholar]
- Guo, F. Theory and Methodology of Quality Control and Quality Analysis for GPS Precise Point Positioning; Wuhan University Press: Wuhan, China, 2016. [Google Scholar]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar] [CrossRef]
- Guang, W.; Dong, S.; Wu, W.; Zhang, J.; Yuan, H.; Zhang, S. Progress of BeiDou time transfer at NTSC. Metrologia 2018, 55, 175–187. [Google Scholar] [CrossRef]
Station | Receiver | Antenna | Clock |
---|---|---|---|
PTBB | SEPT POLARX5TR | LEIAR25.R4 | UTC (PTB) |
BRUX | SEPT POLARX5 | TRM59800.00 | UTC (ROB) |
OP71 | SEPT POLAX5TR | LEIAR25.R4 | UTC (OP) |
NIST | SEPT POLARX5TR | NOV750.R4 | UTC (NIST) |
TWTF | SEPT POLARX4TR | ASH701945C_M | UTC (TL) |
USN7 | SEPT POLARX5TR | TPSCR.G5 | H-MASER |
USN8 | SEPT POLARX5TR | TPSCR.G5 | H-MASER |
Estimator | Kalman Filter |
---|---|
Signals | Galileo: E1/E5a GPS: L1/L2 |
PCV (Phase Center Variation) and PCO (Phase Center Ofset) | Corrected by “igs20.atx” |
Receiver clock offset | Estimated with a white noise model (104 m2) |
Precise products | Broadcast ephemeris + HAS correction |
IGS final products | |
Tropospheric delay | ZHD (Zenith Hydrostatic Delay): corrected [33] |
ZWD (Zenith Wet Delay): estimated with a random walk noise model (3 × 10−8 m2/s) | |
Tidal displacement | Corrected [34] |
Phase ambiguities | Estimate as constant at each arc; when cycle-slip happened, estimated as white noise model (104 m2) |
Receiver coordinates | Static model: Estimate as constant |
Kinematic model: Estimate as white noise (104 m2) |
Time-Links | GPS | Galileo | Galileo/GPS |
---|---|---|---|
BRUX-PTBB | 0.26 | 0.21 | 0.22 |
NIST-PTBB | 0.41 | 0.30 | 0.34 |
OP71-PTBB | 0.23 | 0.19 | 0.18 |
TWTF-PTBB | 0.62 | 0.41 | 0.40 |
USN7-PTBB | 0.47 | 0.39 | 0.35 |
USN8-PTBB | 0.45 | 0.38 | 0.34 |
Time-Links | 960 s | 15,360 s | ||||
---|---|---|---|---|---|---|
G | E | E/G | G | E | E/G | |
BRUX-PTBB | 2.37 × 10−14 | 2.38 × 10−14 | 2.35 × 10−14 | 4.82 × 10−15 | 4.20 × 10−15 | 4.04 × 10−15 |
NIST-PTBB | 7.44 × 10−14 | 4.92 × 10−14 | 4.64 × 10−14 | 1.61 × 10−14 | 1.56 × 10−14 | 1.06 × 10−14 |
OP71-PTBB | 2.59 × 10−14 | 2.58 × 10−14 | 2.50 × 10−14 | 5.40 × 10−15 | 5.39 × 10−15 | 4.53 × 10−15 |
TWTF-PTBB | 9.49 × 10−14 | 7.80 × 10−14 | 6.24 × 10−14 | 2.18 × 10−14 | 2.08 × 10−14 | 1.43 × 10−14 |
USN7-PTBB | 6.26 × 10−14 | 4.75 × 10−14 | 4.38 × 10−14 | 1.11 × 10−14 | 1.10 × 10−14 | 9.31 × 10−15 |
USN8-PTBB | 6.67 × 10−14 | 6.51 × 10−14 | 4.34 × 10−14 | 1.24 × 10−14 | 1.10 × 10−14 | 9.36 × 10−15 |
Time-Links | GPS | Galileo | Galileo/GPS |
---|---|---|---|
BRUX-PTBB | 0.37 | 0.33 | 0.23 |
NIST-PTBB | 1.26 | 1.05 | 0.58 |
OP71-PTBB | 0.35 | 0.35 | 0.19 |
TWTF-PTBB | 1.09 | 1.57 | 0.76 |
USN7-PTBB | 1.55 | 1.08 | 0.58 |
USN8-PTBB | 1.46 | 1.10 | 0.58 |
Time-Links | 960 s | 15,360 s | ||||
---|---|---|---|---|---|---|
G | E | E/G | G | E | E/G | |
BRUX-PTBB | 1.62 × 10−13 | 1.34 × 10−13 | 7.22 × 10−14 | 3.06 × 10−14 | 2.80 × 10−14 | 1.16 × 10−14 |
NIST-PTBB | 7.89 × 10−13 | 2.84 × 10−13 | 1.72 × 10−13 | 1.70 × 10−13 | 8.05 × 10−14 | 4.45 × 10−14 |
OP71-PTBB | 2.37 × 10−13 | 1.82 × 10−13 | 7.49 × 10−14 | 5.41 × 10−14 | 5.04 × 10−14 | 1.30 × 10−14 |
TWTF-PTBB | 7.26 × 10−13 | 7.83 × 10−13 | 2.82 × 10−13 | 2.07 × 10−13 | 2.18 × 10−13 | 7.84 × 10−14 |
USN7-PTBB | 6.55 × 10−13 | 3.21 × 10−13 | 1.83 × 10−13 | 2.15 × 10−13 | 1.22 × 10−13 | 4.78 × 10−14 |
USN8-PTBB | 6.09 × 10−13 | 3.04 × 10−13 | 1.79 × 10−13 | 2.18 × 10−13 | 1.16 × 10−13 | 4.83 × 10−14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Chen, S.; An, Y.; Shen, P.; Xiao, X.; Chen, Q.; Wei, J.; Chen, Y.; Yu, Y. An Investigation of Real-Time Galileo/GPS Integrated Precise Kinematic Time Transfer Based on Galileo HAS Service. Sensors 2025, 25, 3243. https://doi.org/10.3390/s25103243
Xu L, Chen S, An Y, Shen P, Xiao X, Chen Q, Wei J, Chen Y, Yu Y. An Investigation of Real-Time Galileo/GPS Integrated Precise Kinematic Time Transfer Based on Galileo HAS Service. Sensors. 2025; 25(10):3243. https://doi.org/10.3390/s25103243
Chicago/Turabian StyleXu, Lei, Shaoxin Chen, Yuanyuan An, Pengli Shen, Xia Xiao, Qianqian Chen, Jianxiong Wei, Yao Chen, and Ye Yu. 2025. "An Investigation of Real-Time Galileo/GPS Integrated Precise Kinematic Time Transfer Based on Galileo HAS Service" Sensors 25, no. 10: 3243. https://doi.org/10.3390/s25103243
APA StyleXu, L., Chen, S., An, Y., Shen, P., Xiao, X., Chen, Q., Wei, J., Chen, Y., & Yu, Y. (2025). An Investigation of Real-Time Galileo/GPS Integrated Precise Kinematic Time Transfer Based on Galileo HAS Service. Sensors, 25(10), 3243. https://doi.org/10.3390/s25103243