Clutter Mitigation in Indoor Radar Sensors Using Sensor Fusion Technology
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Measurement Environment
3.2. Experimental Results from Measuring Distance and Velocity of a Moving Subject
3.3. Clutter Mitigation in the Proposed Sensor Configuration
3.3.1. Implementation of Signal Processing
3.3.2. Improvements with the Proposed Configuration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DNN-LSTM | Deep Neural Network—Long Short-Term Memory |
FMCW | Frequency-Modulated Continuous Wave |
FFT | Fast Fourier Transform |
HOG | Histogram of Oriented Gradients |
LiDAR | Light Detection and Ranging |
MTI | Moving Target Indicator |
RADAR | RAdio Detection and Ranging |
ROI | Region of Interest |
RGB | Red, Green, and Blue |
SNR | Signal-to-Noise Ratio |
References
- Shastri, A.; Valecha, N.; Bashirov, E.; Tataria, H.; Lentmaier, M.; Tufvesson, F. A review of millimeter wave device-based localization and device-free sensing. IEEE Commun. Surv. Tutor. 2022, 24, 1708–1749. [Google Scholar] [CrossRef]
- Soumya, A.; Mohan, C.K.; Cenkeramaddi, L.R. Recent advances in mmWave-radar-based sensing, its applications, and machine learning techniques: A review. Sensors 2023, 23, 8901. [Google Scholar] [CrossRef]
- Ding, R.; Wang, Z.; Jiang, L.; Zheng, S. Radar target localization with multipath exploitation in dense clutter environments. Appl. Sci. 2023, 13, 2032. [Google Scholar] [CrossRef]
- Hwang, W.; Jang, H.; Choi, M. Clutter cancellation methods for small target detection using high-resolution W-band radar. Sensors 2023, 23, 7557. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Song, T.L. Multi-sensor track-to-track fusion with target existence in cluttered environments. IET Radar Sonar Navig. 2017, 11, 1108–1115. [Google Scholar] [CrossRef]
- Favelli, S.; Xie, M.; Tonoli, A. Sensor fusion method for object detection and distance estimation in assisted driving applications. Sensors 2024, 24, 7895. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Radar-based monitoring of the worker activities by exploiting range-Doppler and micro-Doppler signatures. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 7–9 June 2021. [Google Scholar] [CrossRef]
- Kim, B.-S.; Jin, Y.; Bae, J.; Hyun, E. Efficient clutter cancellation algorithm based on a suppressed clutter map for FMCW radar systems. J. Electromagn. Eng. Sci. 2023, 23, 449–451. [Google Scholar] [CrossRef]
- Li, S.; Yoon, H.-S. Sensor fusion-based vehicle detection and tracking using a single camera and radar at a traffic intersection. Sensors 2023, 23, 4888. [Google Scholar] [CrossRef]
- Nabati, R.; Qi, H. CenterFusion: Center-based radar and camera fusion for 3D object detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021. [Google Scholar] [CrossRef]
- Miron, Y.; Drews, F.; Faion, F.; Di Castro, D.; Klein, I. RCF-TP: Radar-camera fusion with temporal priors for 3D object detection. IEEE Access 2024, 12, 127212–127223. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Wu, X.; Lan, X.; Su, T.; Guo, Y. A target detection algorithm based on fusing radar with a camera in the presence of a fluctuating signal intensity. Remote Sens. 2024, 16, 3356. [Google Scholar] [CrossRef]
- Wang, S.; Mei, L.; Liu, R.; Jiang, W.; Yin, Z.; Deng, X.; He, T. Multi-modal fusion sensing: A comprehensive review of millimeter-wave radar and its integration with other modalities. IEEE Comm. Surv. Tutor. 2024, 27, 322–352. [Google Scholar] [CrossRef]
- Duan, J. Study on multi-heterogeneous sensor data fusion method based on millimeter-wave radar and camera. Sensors 2023, 23, 6044. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chao, S.; Yan, D.; Guo, L.; Liu, Y.; Li, L. Multi-sensor data fusion method based on self-attention mechanisms. Appl. Sci. 2023, 13, 11992. [Google Scholar] [CrossRef]
- Kong, H.; Huang, C.; Yu, J.; Shen, X. A survey of mmWave radar-based sensing in autonomous vehicles, smart homes, and industry. IEEE Comm. Surv. Tutor. 2024, 27, 463–508. [Google Scholar] [CrossRef]
- Tian, X.; Zheng, P.; Huang, J. Robust privacy-preserving motion and object tracking in encrypted streaming video. IEEE Trans. Inf. Forensics Secur. 2021, 16, 5381–5396. [Google Scholar] [CrossRef]
- Sun, C.-C.; Lin, Y.-Y.; Hong, W.-J.; Jan, G.-E. Heterogeneous fusion of camera and mmWave radar sensor of optimizing convolutional neural networks for parking meter system. Sensors 2023, 23, 4159. [Google Scholar] [CrossRef]
- Will, C.; Vaishnav, P.; Chakraborty, A.; Santra, A. Human target detection, tracking, and classification using 24-GHz FMCW radar. IEEE Sens. J. 2019, 19, 7283–7299. [Google Scholar] [CrossRef]
- Rojhani, N.; Passafiume, M.; Shaker, G. Low-complexity algorithm for people detection using FMCW radar. In Proceedings of the 2024 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Montreal, QC, Canada, 11–13 June 2024. [Google Scholar] [CrossRef]
- Lakshminaray Anan, A.P.; Kumawat, H.C.; Raj, A.B. Moving target detection in foliage environment using FMCW radar. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020. [Google Scholar] [CrossRef]
- Kim, W.Y.; Seo, D.H. Radar-based human activity recognition combining range-time-Doppler maps and range-distributed-convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1002311. [Google Scholar] [CrossRef]
- Wen, Q.; Cao, S. Radar range-Doppler flow: A radar signal processing technique to enhance radar target classification. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 1519–1529. [Google Scholar] [CrossRef]
- Jian, Z.; Zhu, F.; Tang, L. Research on Human Body Recognition and Position Measurement Based on AdaBoost and RGB-D. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020. [Google Scholar] [CrossRef]
- Fei, X.; Wang, H.; Cheong, L.L.; Zeng, X.; Wang, M.; Tighe, J. Single view physical distance estimation using human pose. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2022. [Google Scholar] [CrossRef]
- Song, Z.; Gao, S.; Chen, C. A multispectral feature fusion network for robust pedestrian detection. Alex. Eng. J. 2021, 60, 73–85. [Google Scholar] [CrossRef]
- Su, J.; An, Y.; Wu, J.; Zhang, K. Pedestrian detection based on feature enhancement in complex scenes. Algorithms 2024, 17, 39. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Wu, X.; Lan, X.; Su, T.; Gu, Y. A robust target detection algorithm based on the fusion of frequency modulated continuous wave radar and a monocular camera. Remote Sens. 2024, 16, 2225. [Google Scholar] [CrossRef]
- Aprile, A.; Grossi, E.; Lops, M.; Venturio, L. A procedure to improve the detection rate in radar systems with an electronically-scanned antenna. In Proceedings of the 2014 11th European Radar Conference, Rome, Italy, 8–10 October 2014. [Google Scholar] [CrossRef]
Raw RD Map | With Circular-Region Masking | With Square-Region Masking | |
---|---|---|---|
Signal-to-noise ratio | −20.7 dB | −18.7 dB | −20.3 dB |
Detection rate | 14.84% | 23.44% | 18.75% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Lee, H.-N.; Park, Y.; Kim, S.; Park, S.-H.; Yang, J.-R. Clutter Mitigation in Indoor Radar Sensors Using Sensor Fusion Technology. Sensors 2025, 25, 3113. https://doi.org/10.3390/s25103113
Singh S, Lee H-N, Park Y, Kim S, Park S-H, Yang J-R. Clutter Mitigation in Indoor Radar Sensors Using Sensor Fusion Technology. Sensors. 2025; 25(10):3113. https://doi.org/10.3390/s25103113
Chicago/Turabian StyleSingh, Srishti, Ha-Neul Lee, Yuna Park, Sungho Kim, Si-Hyun Park, and Jong-Ryul Yang. 2025. "Clutter Mitigation in Indoor Radar Sensors Using Sensor Fusion Technology" Sensors 25, no. 10: 3113. https://doi.org/10.3390/s25103113
APA StyleSingh, S., Lee, H.-N., Park, Y., Kim, S., Park, S.-H., & Yang, J.-R. (2025). Clutter Mitigation in Indoor Radar Sensors Using Sensor Fusion Technology. Sensors, 25(10), 3113. https://doi.org/10.3390/s25103113