A Novel Loosely Coupled Collaborative Localization Method Utilizing Integrated IMU-Aided Cameras for Multiple Autonomous Robots
Abstract
1. Introduction
1.1. Motivation
1.2. Related Work
1.3. Our Approach
2. Design of the State Vector
2.1. Definition of Variables
2.2. Construction of the SR-CICEKF State Vector
2.2.1. Coupling Process for the SR-CICEKF
2.2.2. Simplification of the SR-CICEKF State Vector
2.2.3. Error of the SR-CICEKF State Vector
2.3. Construction of the MR-CICEKF State Vector
2.3.1. Simplification of the MR-CICEKF State Vector
2.3.2. Error of the MR-CICEKF State Vector
2.4. Relationships Among the Variables in the CICEKF
3. Propagation and Update of the CICEKF
3.1. Propagation and Measurement of the SR-CICEKF
3.1.1. Propagation of the SR-CICEKF
3.1.2. Measurement of the SR-CICEKF
3.2. Propagation and Measurement of the MR-CICEKF
3.3. Entire CICEKF Process
Algorithm 1: SR-CICEKF | |
Input: ,,; | |
1 | While true do |
2 | Update , according to and ; (Propagation process in Section 3.1.1) |
3 | Update ; |
4 | Update ; |
5 | Calculate according to ; (Measurement process in Section 3.1.2) |
6 | Update the current state ; |
7 | Update ; |
8 | ; |
9 | Output: . |
Algorithm 2: MR-CICEKF | |
Input: ,,,,; | |
1 | While true do |
2 | Update according to and ; |
3 | Update , according to and ; (Propagation process in Section 3.2) |
4 | Update ; |
5 | Update ; |
6 | Calculate according to ; (Measurement process in Section 3.2) |
7 | Update the current state ; |
8 | Update ; |
9 | ; |
10 | Output: . |
4. Nonlinear Observability Analysis
4.1. Observability Analysis of the SR-CICEKF
4.2. Observability Analysis of the MR-CICEKF
5. Data Test
5.1. SR-CICEKF Simulation Test
5.2. MR-CICEKF Simulation
5.3. Dataset Test
6. Experiments
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Servières, M.; Renaudin, V.; Dupuis, A.; Antigny, N. Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking. J. Sens. 2021, 2021, 2054828. [Google Scholar] [CrossRef]
- Sun, Z.; Gao, W.; Tao, X.; Pan, S.; Wu, P.; Huang, H. Semi-tightly coupled robust model for GNSS/UWB/INS integrated positioning in challenging environments. Remote Sens. 2024, 16, 2108. [Google Scholar] [CrossRef]
- He, M.; Zhu, C.; Huang, Q.; Ren, B.; Liu, J. A review of monocular visual odometry. Vis. Comput. 2020, 36, 1053–1065. [Google Scholar] [CrossRef]
- Elamin, A.; El-Rabbany, A.; Jacob, S. Event-Based Visual/Inertial Odometry for UAV Indoor Navigation. Sensors 2024, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Huang, P.; Wang, W. Tightly coupled visual-inertial-UWB indoor localization system with multiple position-unknown anchors. IEEE Robot. Autom. Lett. 2023, 9, 351–358. [Google Scholar] [CrossRef]
- Tonini, A.; Castelli, M.; Bates, J.S.; Lin, N.N.N.; Painho, M. Visual-Inertial Method for Localizing Aerial Vehicles in GNSS-Denied Environments. Appl. Sci. 2024, 14, 9493. [Google Scholar] [CrossRef]
- Nemec, D.; Šimák, V.; Janota, A.; Hruboš, M.; Bubeníková, E. Precise localization of the mobile wheeled robot using sensor fusion of odometry, visual artificial landmarks and inertial sensors. Robot. Auton. Syst. 2019, 112, 168–177. [Google Scholar] [CrossRef]
- Li, Z.; You, B.; Ding, L.; Gao, H.; Huang, F. Trajectory Tracking Control for WMRs with the Time-Varying Longitudinal Slippage Based on a New Adaptive SMC Method. Int. J. Aerosp. Eng. 2019, 2019, 4951538. [Google Scholar] [CrossRef]
- Tschopp, F.; Riner, M.; Fehr, M.; Bernreiter, L.; Furrer, F.; Novkovic, T.; Pfrunder, A.; Cadena, C.; Siegwart, R.; Nieto, J. Versavis—An open versatile multi-camera visual-inertial sensor suite. Sensors 2020, 20, 1439. [Google Scholar] [CrossRef]
- Reginald, N.; Al-Buraiki, O.; Choopojcharoen, T.; Fidan, B.; Hashemi, E. Visual-Inertial-Wheel Odometry with Slip Compensation and Dynamic Feature Elimination. Sensors 2025, 25, 1537. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, C.; Zou, L.; Li, S. Real-Time Optimal States Estimation with Inertial and Delayed Visual Measurements for Unmanned Aerial Vehicles. Sensors 2023, 23, 9074. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, P.-Y.; Beltrame, G. Swarm-slam: Sparse decentralized collaborative simultaneous localization and mapping framework for multi-robot systems. IEEE Robot. Autom. Lett. 2023, 9, 475–482. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Li, D.; Zhao, Q. Distributed relative localization algorithms for multi-robot networks: A survey. Sensors 2023, 23, 2399. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, Y. An integrated localization and control framework for multi-agent formation. IEEE Trans. Signal Process. 2019, 67, 1941–1956. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, B.; Zhou, J.; Zhang, Y.; Liu, X. Real-time localization and mapping utilizing multi-sensor fusion and visual–IMU–wheel odometry for agricultural robots in unstructured, dynamic and GPS-denied greenhouse environments. Agronomy 2022, 12, 1740. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Li, M.; Mourikis, A.I. High-precision, consistent EKF-based visual-inertial odometry. Int. J. Robot. Res. 2013, 32, 690–711. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, T.-M.; Xie, L. Flexible and resource-efficient multi-robot collaborative visual-inertial-range localization. IEEE Robot. Autom. Lett. 2021, 7, 928–935. [Google Scholar] [CrossRef]
- Tian, Y.; Chang, Y.; Arias, F.H.; Nieto-Granda, C.; How, J.P.; Carlone, L. Kimera-multi: Robust, distributed, dense metric-semantic slam for multi-robot systems. IEEE Trans. Robot. 2022, 38, 2022–2038. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, J.; Huang, C.; Li, L. Learning visual semantic map-matching for loosely multi-sensor fusion localization of autonomous vehicles. IEEE Trans. Intell. Veh. 2022, 8, 358–367. [Google Scholar] [CrossRef]
- Kelly, J.; Sukhatme, G.S. Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor self-calibration. Int. J. Robot. Res. 2011, 30, 56–79. [Google Scholar] [CrossRef]
- Weiss, S.; Siegwart, R. Real-time metric state estimation for modular vision-inertial systems. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4531–4537. [Google Scholar]
- Achtelik, M.W.; Weiss, S.; Chli, M.; Dellaerty, F.; Siegwart, R. Collaborative stereo. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2242–2248. [Google Scholar]
- Brossard, M.; Bonnabel, S.; Barrau, A. Invariant Kalman filtering for visual inertial SLAM. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 2021–2028. [Google Scholar]
- Sun, W.; Li, Y.; Ding, W.; Zhao, J. A novel visual inertial odometry based on interactive multiple model and multistate constrained Kalman filter. IEEE Trans. Instrum. Meas. 2023, 73, 5000110. [Google Scholar] [CrossRef]
- Fornasier, A.; Ng, Y.; Mahony, R.; Weiss, S. Equivariant filter design for inertial navigation systems with input measurement biases. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 4333–4339. [Google Scholar]
- van Goor, P.; Mahony, R. An equivariant filter for visual inertial odometry. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 14432–14438. [Google Scholar]
- Trawny, N.; Roumeliotis, S.I. Indirect Kalman Filter for 3D Attitude Estimation; University of Minnesota, Department of Computer Science & Engineering, Technical Report: Minneapolis, MN, USA, 2005; Volume 2. [Google Scholar]
- Liu, C.; Wang, T.; Li, Z.; Tian, P. A Novel Real-Time Autonomous Localization Algorithm Based on Weighted Loosely Coupled Visual–Inertial Data of the Velocity Layer. Appl. Sci. 2025, 15, 989. [Google Scholar] [CrossRef]
- Dam, E.B.; Koch, M.; Lillholm, M. Quaternions, Interpolation and Animation; Datalogisk Institut, Københavns Universitet: Copenhagen, Denmark, 1998; Volume 2. [Google Scholar]
- Maybeck, P. Stochastic Models, Estimation, and Control; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Beder, C.; Steffen, R. Determining an initial image pair for fixing the scale of a 3d reconstruction from an image sequence. In Proceedings of the Joint Pattern Recognition Symposium, Hong Kong, China, 17–19 August 2006; pp. 657–666. [Google Scholar]
- Eudes, A.; Lhuillier, M. Error propagations for local bundle adjustment. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 2411–2418. [Google Scholar]
- Hermann, R.; Krener, A. Nonlinear controllability and observability. IEEE Trans. Autom. Control 1977, 22, 728–740. [Google Scholar] [CrossRef]
- Grupp, M. evo: Python Package for the Evaluation of Odometry and SLAM. Available online: https://github.com/MichaelGrupp/evo (accessed on 5 April 2025).
- Rehder, J.; Nikolic, J.; Schneider, T.; Hinzmann, T.; Siegwart, R. Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4304–4311. [Google Scholar]
Symbol | Description |
---|---|
w | Coordinate frame of the fixed world |
i | Coordinate frame attached to the IMU’s rigid body |
c | Coordinate frame attached to the rigid body of the dual-camera stereo vision |
ic | Coordinate frame attached to the virtual rigid body of the IMU-aided camera system |
represents a general viable vector, and are the reference coordinate frames, e.g., denotes the linear translation in the coordinate frame measured with respect to the coordinate frame | |
represents a general viable vector, and are the robot indexes, e.g., denotes the linear translation of the -th robot measured with respect to the -th robot, particularly, . | |
Skew-symmetric matrix of , and [28] holds | |
The linear translation vector of rigid bodies along 3 axes, of which the quasi-quaternion description is | |
The unit quaternion following the Hamilton notation [21], written as | |
The conjugate form of , and holds | |
The uncertain bias of the measurement result | |
The equivalent rotation matrix of the quaternion , e.g., | |
White Gaussian noise vector with zero mean and covariance | |
, | The first-order time derivative form and the estimated form of the vector , respectively |
The error form of the vector , which is defined as | |
The error of the quaternion , and holds |
Translation RMSE | Translation Mean Error | Translation STD | Orientation RMSE | Orientation Mean Error | Orientation STD |
---|---|---|---|---|---|
0.1593 m | 0.0429 m | 0.1535 m | 0.106 rad | 0.0187 rad | 0.1044 rad |
Translation RMSE | Translation Mean Error | Translation STD | Orientation RMSE | Orientation Mean Error | Orientation STD |
---|---|---|---|---|---|
0.01872 m | 5.286 × 10−6 m | 0.0187 m | 0.0016 rad | 4.95 × 10−7 rad | 0.0016 rad |
Translation RMSE | Translation Mean Error | Translation STD | |
---|---|---|---|
SR-CICEKF | 0.004211 m | 0.003982 m | 0.001371 m |
Stereo ORB-SLAM V3 | 0.03844 m | 0.03428 m | 0.01739 m |
Stereo ORB-SLAM V3 with the IMU | 0.003236 m | 0.002785 m | 0.001648 m |
Stereo MSCKF | 0.0556 m | 0.048994 m | 0.02629 m |
Translation RMSE | Translation Mean Error | Translation STD | |
---|---|---|---|
SR-CICEKF | 0.00459 m | 0.006448 m | 0.004528 m |
Stereo ORB-SLAM V3 | 0.01723 m | 0.01275 m | 0.01159 m |
Stereo MSCKF | 0.01745 m | 0.01292 m | 0.01173 m |
Translation RMSE | Translation Mean Error | Translation STD | Orientation RMSE | Orientation Mean Error | Orientation STD |
---|---|---|---|---|---|
0.009398 m | 0.0001 m | 0.0094 m | 0.032 rad | 0.00602 rad | 0.03145 rad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, T.; Li, Z.; Li, S.; Tian, P. A Novel Loosely Coupled Collaborative Localization Method Utilizing Integrated IMU-Aided Cameras for Multiple Autonomous Robots. Sensors 2025, 25, 3086. https://doi.org/10.3390/s25103086
Liu C, Wang T, Li Z, Li S, Tian P. A Novel Loosely Coupled Collaborative Localization Method Utilizing Integrated IMU-Aided Cameras for Multiple Autonomous Robots. Sensors. 2025; 25(10):3086. https://doi.org/10.3390/s25103086
Chicago/Turabian StyleLiu, Cheng, Tao Wang, Zhi Li, Shu Li, and Peng Tian. 2025. "A Novel Loosely Coupled Collaborative Localization Method Utilizing Integrated IMU-Aided Cameras for Multiple Autonomous Robots" Sensors 25, no. 10: 3086. https://doi.org/10.3390/s25103086
APA StyleLiu, C., Wang, T., Li, Z., Li, S., & Tian, P. (2025). A Novel Loosely Coupled Collaborative Localization Method Utilizing Integrated IMU-Aided Cameras for Multiple Autonomous Robots. Sensors, 25(10), 3086. https://doi.org/10.3390/s25103086