Validation of MotionWatch8 Actigraphy Against Polysomnography in Menopausal Women Under Warm Conditions
Abstract
Highlights
- What are the main findings?
- MotionWatch8 overestimated TST and SE while it underestimated SOL and WASO.
- MotionWatch8 showed high sensitivity for sleep detection (94.8%) but low specificity for wake detection (33.1%), with an overall accuracy of 87.3%.
- What is the implication of the main finding?
- MotionWatch8 may be less reliable for individuals with more extreme sleep characteristics (SOL > 30 min and WASO > 80 min (criteria that fall under insomnia in DSM-5), and SE < 77%).
- Caution is needed when using this device in clinical populations with sleep disturbances
Abstract
1. Introduction
2. Method
2.1. Participants
2.2. Study Procedures
2.3. PSG Recording
- Electroencephalogram (EEG): Five scalp electrodes referenced to mastoid processes (C3-M2, C4-M1, O1-M2, O2-M1, F3-M2), Cz on the scalp as reference, and one ground electrode Fpz on forehead.
- Electrooculogram (EOG): Bilateral electrodes placed near the outer canthus of each eye.
- Electromyogram (EMG): Submental electrodes placed under the chin to record muscle activity.
- Electrocardiogram (ECG): Electrodes placed on the chest to monitor heart activity.
2.4. PSG Data Scoring
2.5. MotionWatch8 Recording and Scoring
2.6. Data Analysis
3. Result
3.1. Bland–Altman Plots
3.2. Linear Mixed Model
3.3. Epoch-by-Epoch Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PSG | polysomnography |
SOL | sleep onset latency |
TST | total sleep time |
SE | sleep efficiency |
WASO | wake after sleep onset |
LMM | linear mixed model |
SD | standard deviation |
AASM | American Academy of Sleep Medicine |
EEG | electroencephalogram |
EOG | electrooculogram |
EMG | electromyogram |
ECG | electrocardiogram |
LOA | limits of agreements |
Appendix A
Variable | Mean Difference | Lower LOA | Upper LOA | Range | p (Offset) | p (Regression Slope) |
---|---|---|---|---|---|---|
SOL (min) | −11.2 | −53.6 | 31.3 | 84.9 | <0.001 * | <0.001 * |
WASO (min) | −9.1 | −74.8 | 56.7 | 131.5 | 0.021 | <0.001 * |
TST (min) | 18.6 | −56.8 | 94.0 | 150.8 | <0.001 * | 0.819 |
SE (%) | 3.6 | −11.7 | 18.7 | 30.5 | <0.001 * | <0.001 * |
References
- Zhang, B.; Wing, Y.K. Sex differences in insomnia: A meta-analysis. Sleep 2006, 29, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Czeisler, C.A.; Weitzman, E.D.; Moore-Ede, M.C.; Zimmerman, J.C.; Knauer, R.S. Human sleep: Its duration and organization depend on its circadian phase. Science 1980, 210, 1264–1267. [Google Scholar] [CrossRef]
- Stuenkel, C.A.; Davis, S.R.; Gompel, A.; Lumsden, M.A.; Murad, M.H.; Pinkerton, J.V.; Santen, R.J. Treatment of symptoms of the menopause: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2015, 100, 3975–4011. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Lang, C.P.; Rooney, N. A systematic review of the longitudinal relationships between subjective sleep disturbance and menopausal stage. Maturitas 2014, 79, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, P.; Mascagni, G.; Giannini, A.; Genazzani, A.R.; Simoncini, T. Symptoms of menopause-global prevalence, physiology and implications. Nat. Rev. Endocrinol. 2018, 14, 199–215. [Google Scholar] [CrossRef]
- Woods, N.F.; Mitchell, E.S. Symptoms during the perimenopause: Prevalence, severity, trajectory, and significance in women’s lives. Am. J. Med. 2005, 118, 14–24. [Google Scholar] [CrossRef]
- Rundo, J.V.; Downey, R., 3rd. Chapter 25—Polysomnography. Handb. Clin. Neurol. 2019, 160, 381–392. [Google Scholar]
- Kravitz, H.M.; Avery, E.; Sowers, M.; Bromberger, J.T.; Owens, J.F.; Matthews, K.A.; Hall, M.; Zheng, H.; Gold, E.B.; Buysse, D.J. Relationships between menopausal and mood symptoms and EEG sleep measures in a multi-ethnic sample of middle-aged women: The SWAN sleep study. Sleep 2011, 34, 1221–1232. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef]
- Fischer, D.; Klerman, E.B.; Phillips, A.J. Measuring sleep regularity: Theoretical properties and practical usage of existing metrics. Sleep 2021, 44, zsab103. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Martin, J.L.; Blackwell, T.; Buenaver, L.; Liu, L.; Meltzer, L.J.; Sadeh, A.; Spira, A.P.; Taylor, D.J. The SBSM guide to actigraphy monitoring: Clinical and research applications. Behav. Sleep Med. 2015, 13, S4–S38. [Google Scholar] [CrossRef]
- Kripke, D.F.; Mullaney, D.; Messin, S.; Wyborney, V.G. Wrist actigraphic measures of sleep and rhythms. Electroencephalogr. Clin. Neurophysiol. 1978, 44, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Acebo, C.; LeBourgeois, M.K. Actigraphy. Respir. Care Clin. N. Am. 2006, 12, 23–30. [Google Scholar] [PubMed]
- Conley, S.; Knies, A.; Batten, J.; Ash, G.; Miner, B.; Hwang, Y.; Jeon, S.; Redeker, N.S. Agreement between actigraphic and polysomnographic measures of sleep in adults with and without chronic conditions: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 46, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Li, Y.; Rueschman, M.N.; Winkelman, J.W.; Ellenbogen, J.M.; Solet, J.M.; Dulin, H.; Berkman, L.F.; Buxton, O.M. Measuring sleep: Accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 2013, 36, 1747–1755. [Google Scholar] [CrossRef]
- Paquet, J.; Kawinska, A.; Carrier, J. Wake detection capacity of actigraphy during sleep. Sleep 2007, 30, 1362. [Google Scholar] [CrossRef]
- Smith, M.T.; McCrae, C.S.; Cheung, J.; Martin, J.L.; Harrod, C.G.; Heald, J.L.; Carden, K.A. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2018, 14, 1209–1230. [Google Scholar] [CrossRef]
- Van de Water, A.T.; Holmes, A.; Hurley, D.A. Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography–A systematic review. J. Sleep Res. 2011, 20, 183–200. [Google Scholar] [CrossRef]
- Yuan, H.; Hill, E.A.; Kyle, S.D.; Doherty, A. A systematic review of the performance of actigraphy in measuring sleep stages. J. Sleep Res. 2024, 33, e14143. [Google Scholar] [CrossRef]
- Waki, M.; Nakada, R.; Waki, K.; Ban, Y.; Suzuki, R.; Yamauchi, T.; Nangaku, M.; Ohe, K. Validation of Sleep Measurements of an Actigraphy Watch: Instrument Validation Study. JMIR Form. Res. 2025, 9, e63529. [Google Scholar] [CrossRef]
- Freedman, R.R. Physiology of hot flashes. Am. J. Hum. Biol. 2001, 13, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.R. Hot flashes: Behavioral treatments, mechanisms, and relation to sleep. Am. J. Med. 2005, 118, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Stearns, V.; Ullmer, L.; Lopez, J.F.; Smith, Y.; Isaacs, C.; Hayes, D.F. Hot flushes. Lancet 2002, 360, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Aili, K.; Åström-Paulsson, S.; Stoetzer, U.; Svartengren, M.; Hillert, L. Reliability of actigraphy and subjective sleep measurements in adults: The design of sleep assessments. J. Clin. Sleep Med. 2017, 13, 39–47. [Google Scholar] [CrossRef]
- Fekedulegn, D.; Andrew, M.E.; Shi, M.; Violanti, J.M.; Knox, S.; Innes, K.E. Actigraphy-based assessment of sleep parameters. Ann. Work. Expo. Health 2020, 64, 350–367. [Google Scholar] [CrossRef]
- Chow, C.M.; Wong, S.N.; Shin, M.; Maddox, R.G.; Feilds, K.L.; Paxton, K.; Hawke, C.; Hazell, P.; Steinbeck, K. Defining the rest interval associated with the main sleep period in actigraph scoring. Nat. Sci. Sleep 2016, 8, 321–328. [Google Scholar] [CrossRef]
- Full, K.M.; Kerr, J.; Grandner, M.A.; Malhotra, A.; Moran, K.; Godoble, S.; Natarajan, L.; Soler, X. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography. Sleep Health 2018, 4, 209–216. [Google Scholar] [CrossRef]
- Lichstein, K.L.; Stone, K.C.; Donaldson, J.; Nau, S.D.; Soeffing, J.P.; Murray, D.; Lester, K.W.; Aguillard, R.N. Actigraphy validation with insomnia. Sleep 2006, 29, 232–239. [Google Scholar]
- Smith, C.; Galland, B.; Taylor, R.; Meredith-Jones, K. ActiGraph GT3X+ and actical wrist and hip worn accelerometers for sleep and wake indices in young children using an automated algorithm: Validation with polysomnography. Front. Psychiatry 2020, 10, 958. [Google Scholar] [CrossRef]
- Toon, E.; Davey, M.J.; Hollis, S.L.; Nixon, G.M.; Horne, R.S.; Biggs, S.N. Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. J. Clin. Sleep Med. 2016, 12, 343–350. [Google Scholar] [CrossRef]
- Guo, Y.; Li, S.; Li Liu, D.; Chen, D.; Williams, G.; Tong, S. Projecting future temperature-related mortality in three largest Australian cities. Environ. Pollut. 2016, 208, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, E.; Boland, J. Limits of thermal adaptation in cities: Outdoor heat-activity dynamics in Sydney, Melbourne and Adelaide. Archit. Sci. Rev. 2018, 61, 191–201. [Google Scholar] [CrossRef]
- García-Valladares, O.; Ituna-Yudonago, J. Energy, economic and emissions avoided contribution of domestic solar water heating systems for Mexico, Costa Rica and the Democratic Republic of the Congo. Sustain. Energy Technol. Assessments 2020, 39, 100721. [Google Scholar] [CrossRef]
- Bai, L.; Ding, G.; Gu, S.; Bi, P.; Su, B.; Qin, D.; Xu, G.; Liu, Q. The effects of summer temperature and heat waves on heat-related illness in a coastal city of China, 2011–2013. Environ. Res. 2014, 132, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Curriero, F.C.; Heiner, K.S.; Samet, J.M.; Zeger, S.L.; Strug, L.; Patz, J.A. Temperature and mortality in 11 cities of the eastern United States. Am. J. Epidemiol. 2002, 155, 80–87. [Google Scholar] [CrossRef]
- Karanisa, T.; Amato, A.; Richer, R.; Abdul Majid, S.; Skelhorn, C.; Sayadi, S. Agricultural production in Qatar’s hot arid climate. Sustainability 2021, 13, 4059. [Google Scholar] [CrossRef]
- Elasha, B.O. Mapping of climate change threats and human development impacts in the Arab region. In UNDP Arab Development Report—Research Paper Series, UNDP Regiona Bureau for the Arab States; United Nations Development Programme: New York, NY, USA, 2010. [Google Scholar]
- Shin, M.; Swan, P.; Chow, C.M. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions. Sleep Sci. 2015, 8, 9–15. [Google Scholar] [CrossRef]
- Travers, C.; O’neill, S.; King, R.; Battistutta, D.; Khoo, S. Greene Climacteric Scale: Norms in an Australian population in relation to age and menopausal status. Climacteric 2005, 8, 56–62. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [Google Scholar] [CrossRef]
- Elbaz, M.; Yauy, K.; Metlaine, A.; Martoni, M.; Leger, D. Validation of a new actigraph motion watch versus polysomnography on 70 healthy and suspected sleepdisordered subjects. J. Sleep Res. 2012, 21, 218. [Google Scholar]
- Morin, C.M.; Benca, R. Chronic insomnia. Lancet 2012, 379, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Regier, D.A.; Kuhl, E.A.; Kupfer, D.J. The DSM-5: Classification and criteria changes. World Psychiatry 2013, 12, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Kosmadopoulos, A.; Sargent, C.; Darwent, D.; Zhou, X.; Roach, G.D. Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system. Behav. Res. Methods 2014, 46, 1032–1041. [Google Scholar] [CrossRef]
- Delucca, G. Wrist Actigraphy Analysis From Motionwatch8 Data. Int. J. Adv. Life Sci. 2019, 11, 75–84. [Google Scholar]
Variable | n (%) | Mean± SD | Range |
---|---|---|---|
Age | years | 45–63 years | |
BMI | kg/m2 | 20.7–30.0 kg/m2 | |
Menopause type | |||
Natural | 15 (93.8%) | ||
Surgical | 1 (6.3%) | ||
Menopause stage | |||
Last menses < 1 year | 8 (50.0%) | ||
1 year < last menses < 2 years | 6 (37.5%) | ||
last menses > 2 years | 2 (12.5%) | ||
Dominant Hand | |||
Right | 13 (81.3%) | ||
Left | 3 (18.8%) | ||
Ethnicity | |||
Asian | 4 (25.0%) | ||
Caucasian | 12 (75.0%) |
Sleep Parameter | Device (Mean ± Std. Error) | F-Value | Devices | |
---|---|---|---|---|
PSG | MotionWatch8 | |||
SOL (minutes) | 16.0 ± 3.2 | 5.1 ± 3.2 | 9.835 | 0.004 * |
WASO (minutes) | 45.9 ± 6.6 | 36.2 ± 6.6 | 3.729 | 0.063 * |
TST (minutes) | 408.1 ± 11.0 | 426.8 ± 11.0 | 11.677 | 0.002 * |
SE (%) | 87.3 ± 1.6 | 90.9 ± 1.6 | 10.458 | 0.003 * |
Mean ± SD | Range | 95% CI | |
---|---|---|---|
Sensitivity | 94.8 ± 3.2% | 85.8–100% | 94.0%, 95.6% |
Specificity | 33.1 ± 19.5% | 0.0–82.2% | 28.1%, 38.1% |
Accuracy | 87.3 ± 6.6% | 65.8–96.8% | 85.6%, 88.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Halaki, M.; Chow, C.M. Validation of MotionWatch8 Actigraphy Against Polysomnography in Menopausal Women Under Warm Conditions. Sensors 2025, 25, 3040. https://doi.org/10.3390/s25103040
Li X, Halaki M, Chow CM. Validation of MotionWatch8 Actigraphy Against Polysomnography in Menopausal Women Under Warm Conditions. Sensors. 2025; 25(10):3040. https://doi.org/10.3390/s25103040
Chicago/Turabian StyleLi, Xinzhu, Mark Halaki, and Chin Moi Chow. 2025. "Validation of MotionWatch8 Actigraphy Against Polysomnography in Menopausal Women Under Warm Conditions" Sensors 25, no. 10: 3040. https://doi.org/10.3390/s25103040
APA StyleLi, X., Halaki, M., & Chow, C. M. (2025). Validation of MotionWatch8 Actigraphy Against Polysomnography in Menopausal Women Under Warm Conditions. Sensors, 25(10), 3040. https://doi.org/10.3390/s25103040