LarGAN: A Label Auto-Rescaling Generation Adversarial Network for Rare Surface Defects
Abstract
:1. Introduction
2. Methodology
2.1. Progressive Framework
2.2. Label Auto-Rescaling
2.3. Rescaling Rate and Learning Rate
3. Experiments and Results
3.1. Data Description
3.2. Comparisons of Quality for Generated Images
3.3. Comparisons of Generated Dataset Diversity
3.4. Improved for Object Detection Task
3.5. Generation Results in Other Dataset
4. Limitations and Future Work
4.1. Limitation
4.2. Future Work
- (1)
- Broader Industrial Applications: Currently, LarGAN has primarily been applied to defect data augmentation for casting slab surfaces. However, its application scope could be expanded to other industrial scenarios, such as steel, electronics, and other manufacturing sectors, providing a viable solution for defect data augmentation in a variety of fields.
- (2)
- Multi-Defect Generation and Joint Distribution Issue: The current LarGAN method, based on a single defect sample label-scaling approach, performs well for single defect types but struggles with handling multiple defects or joint distributions of various defects. In the future, we plan to improve this by developing a multi-defect generation method to enhance LarGAN’s ability to handle complex scenarios.
- (3)
- Enhancements in Generative Models: In addition to refining the current label scaling method, future work could explore advanced generative models, such as Diffusion Models, and methods that integrate Vision Transformers or Multimodal Large Models to further improve the quality and diversity of generated images.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yi, C.; Chen, Q.; Xu, B.; Huang, T. Steel Strip Defect Sample Generation Method Based on Fusible Feature GAN Model under Few Samples. Sensors 2023, 23, 3216. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, X.; Wang, X.V.; Wang, L.; Gao, L. A review on recent advances in vision-based defect recognition towards industrial intelligence. J. Manuf. Syst. 2022, 62, 753–766. [Google Scholar] [CrossRef]
- Hao, Z.; Li, Z.; Ren, F.; Lv, S.; Ni, H. Strip Steel Surface Defects Classification Based on Generative Adversarial Network and Attention Mechanism. Metals 2022, 12, 311. [Google Scholar] [CrossRef]
- Ai, Y.H.; Xu, K. Surface detection of continuous casting slabs based on curvelet transform and kernel locality preserving projections. J. Iron Steel Res. Int. 2013, 20, 80–86. [Google Scholar] [CrossRef]
- Zhao, L.; Ouyang, Q.; Chen, D.; Udupa, J.K.; Wang, H.; Zeng, Y. Defect detection in slab surface: A novel dual charge-coupled device imaging-based fuzzy connectedness strategy. Rev. Sci. Instrum. 2014, 85, 115004. [Google Scholar] [CrossRef]
- Xu, W.; Liu, G.; Wang, M. A Deep Neural Network-Based Intelligent Detection Model for Manufacturing Defects of Automobile Parts. J. Circuits Syst. Comput. 2023, 32, 2350236. [Google Scholar] [CrossRef]
- Geng, Z.; Shi, C.; Han, Y. Intelligent Small Sample Defect Detection of Water Walls in Power Plants Using Novel Deep Learning Integrating Deep Convolutional GAN. IEEE Trans. Ind. Inform. 2022, 19, 7489–7497. [Google Scholar] [CrossRef]
- Wang, C.; Dong, S.; Zhao, X.; Papanastasiou, G.; Zhang, H.; Yang, G. SaliencyGAN: Deep Learning Semisupervised Salient Object Detection in the Fog of IoT. IEEE Trans. Ind. Inform. 2020, 16, 2667–2676. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, W.; Shimizu, S.; Ma, J.; Jin, Q. Siamese Neural Network Based Few-Shot Learning for Anomaly Detection in Industrial Cyber-Physical Systems. IEEE Trans. Ind. Inform. 2021, 17, 5790–5798. [Google Scholar] [CrossRef]
- Shao, H.; Li, W.; Cai, B.; Wan, J.; Xiao, Y.; Yan, S. Dual-Threshold Attention-Guided Gan and Limited Infrared Thermal Images for Rotating Machinery Fault Diagnosis Under Speed Fluctuation. IEEE Trans. Ind. Inform. 2023, 19, 9933–9942. [Google Scholar] [CrossRef]
- Cheema, M.N.; Nazir, A.; Yang, P.; Sheng, B.; Li, P.; Li, H.; Wei, X.; Qin, J.; Kim, J.; Feng, D.D. Modified GAN-CAED to Minimize Risk of Unintentional Liver Major Vessels Cutting by Controlled Segmentation Using CTA/SPET-CT. IEEE Trans. Ind. Inform. 2021, 17, 7991–8002. [Google Scholar] [CrossRef]
- Niu, S.; Li, B.; Wang, X.; Peng, Y. Region-and strength-controllable GAN for defect generation and segmentation in industrial images. IEEE Trans. Ind. Inform. 2021, 18, 4531–4541. [Google Scholar] [CrossRef]
- Li, W.; Zhong, X.; Shao, H.; Cai, B.; Yang, X. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework. Adv. Eng. Inform. 2022, 52, 101552. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, H.; Wu, Z.; Liu, Y.; Zhu, K. Machine fault diagnosis with small sample based on variational information constrained generative adversarial network. Adv. Eng. Inform. 2022, 54, 101762. [Google Scholar] [CrossRef]
- Liu, F.; Dai, Y. Product quality prediction method in small sample data environment. Adv. Eng. Inform. 2023, 56, 101975. [Google Scholar] [CrossRef]
- Abou Akar, C.; Abdel Massih, R.; Yaghi, A.; Khalil, J.; Kamradt, M.; Makhoul, A. Generative adversarial network applications in industry 4.0: A review. Int. J. Comput. Vis. 2024, 132, 2195–2254. [Google Scholar] [CrossRef]
- Hu, Z.; Schlosser, T.; Friedrich, M.; e Silva, A.L.V.; Beuth, F.; Kowerko, D. Utilizing Generative Adversarial Networks for Image Data Augmentation and Classification of Semiconductor Wafer Dicing Induced Defects. In Proceedings of the 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 10–13 September 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Mohammed, S.S.; Clarke, H.G. Conditional image-to-image translation generative adversarial network (cGAN) for fabric defect data augmentation. Neural Comput. Appl. 2024, 36, 20231–20244. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, W.; Isoni, V.; Sourin, A. Automated anomaly detection for surface defects by dual generative networks with limited training data. IEEE Trans. Ind. Inform. 2023, 20, 421–431. [Google Scholar] [CrossRef]
- Lian, J.; Jia, W.; Zareapoor, M.; Zheng, Y.; Luo, R.; Jain, D.K.; Kumar, N. Deep-learning-based small surface defect detection via an exaggerated local variation-based generative adversarial network. IEEE Trans. Ind. Inform. 2019, 16, 1343–1351. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Han, C.; Shi, H.; Guo, T.; Zhou, B. PetsGAN: Rethinking Priors for Single Image Generation. arXiv 2022, arXiv:2203.01488. [Google Scholar] [CrossRef]
- Shaham, T.R.; Dekel, T.; Michaeli, T. SinGAN: Learning a Generative Model from a Single Natural Image. arXiv 2019, arXiv:1905.01164. [Google Scholar] [CrossRef]
- Shocher, A.; Bagon, S.; Isola, P.; Irani, M. InGAN: Capturing and Remapping the “DNA” of a Natural Image. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4491–4500. [Google Scholar] [CrossRef]
- Hinz, T.; Fisher, M.; Wang, O.; Wermter, S. Improved Techniques for Training Single-Image GANs. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 1299–1308. [Google Scholar] [CrossRef]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv 2018, arXiv:1710.10196. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Q.; Kang, Q.; Zhou, M. MOGAN: Morphologic-structure-aware Generative Learning from a Single Image. arXiv 2022, arXiv:2103.02997. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, S.; Zhang, J.; Huang, K. GP-GAN: Towards Realistic High-Resolution Image Blending. arXiv 2019, arXiv:1703.07195. [Google Scholar] [CrossRef]
- Sushko, V.; Gall, J.; Khoreva, A. One-Shot GAN: Learning to Generate Samples from Single Images and Videos. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 2596–2600. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, C.; Guo, T. ExSinGAN: Learning an Explainable Generative Model From a Single Image. arXiv 2021, arXiv:2105.07350. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. arXiv 2016, arXiv:1603.08155. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. arXiv 2017, arXiv:1704.00028. [Google Scholar]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. arXiv 2018, arXiv:1801.03924. [Google Scholar] [CrossRef]
- Nilsson, J.; Akenine-Möller, T. Understanding SSIM. arXiv 2020, arXiv:2006.13846. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, W.; Deng, Y. Frechet Inception Distance (FID) for Evaluating GANs. China Univ. Min. Technol. Beijing Grad. Sch. 2021, 3. Available online: https://www.researchgate.net/publication/354269184 (accessed on 5 May 2025).
Model | Our | ConSinGAN | SinGAN | |
---|---|---|---|---|
Metric | LPIPS—Learned Perceptual Image Patch Similarity (Lower is Better) | |||
Class | Co | 0.30 | 0.53 | 0.73 |
Ws | 0.46 | 0.61 | 0.47 | |
Sc | 0.37 | 0.49 | 0.51 | |
Ss | 0.43 | 0.36 | 0.69 | |
Lc | 0.38 | 0.26 | 0.47 | |
WSM | 0.40 | 0.18 | 0.56 | |
All | 0.39 | 0.41 | 0.58 |
Model | Our | ConSinGAN | SinGAN | |
---|---|---|---|---|
Metric | SSIM—Structural Similarity (High is better) | |||
Class | Co | 0.62 | 0.87 | 0.32 |
Lc | 0.96 | 0.71 | 0.17 | |
Sc | 0.92 | 0.85 | 0.49 | |
Ss | 0.89 | 0.67 | 0.47 | |
Ws | 0.87 | 0.69 | 0.21 | |
WSM | 0.76 | 0.75 | 0.35 | |
All | 0.84 | 0.76 | 0.33 |
Model | LarGAN | ConSinGAN | SinGAN |
---|---|---|---|
FID | 64.3 | 73.8 | 104.1 |
Experiment | Training Dataset | Validation Dataset | Testing Dataset | ||
---|---|---|---|---|---|
Generated | Real | Generated Images | Real Images | Accuracy ) | |
All Data | 0 | 1920 | 0 | 480 | 83.6 |
90% | 0 | 1728 | 0 | 432 | 83 |
80% | 0 | 1536 | 0 | 384 | 82.1 |
70% | 0 | 1344 | 0 | 336 | 80.3 |
60% | 0 | 1152 | 0 | 288 | 79.9 |
50% | 0 | 960 | 0 | 240 | 79.2 |
40% | 0 | 768 | 0 | 192 | 76.7 |
30% | 0 | 576 | 0 | 144 | 73.6 |
20% | 0 | 384 | 0 | 96 | 70.5 |
10% | 0 | 192 | 0 | 48 | 61.4 |
Experiment | Training Dataset | Validation Dataset | Testing Dataset | |||
---|---|---|---|---|---|---|
Generated | Real | Generated Images | Real Images | Accuracy | Enhancement | |
All Data | 0 | 1920 | 0 | 480 | 83.6 | 0 |
90% | 192 | 1728 | 48 | 432 | 83.2 | +0.2 |
80% | 384 | 1536 | 96 | 384 | 82.4 | +0.3 |
70% | 576 | 1344 | 144 | 336 | 81.7 | +1.4 |
60% | 768 | 1152 | 192 | 288 | 81.2 | +1.3 |
50% | 960 | 960 | 240 | 240 | 80.7 | +1.5 |
40% | 1152 | 768 | 288 | 192 | 78.3 | +1.6 |
30% | 1344 | 576 | 336 | 144 | 75.4 | +1.8 |
20% | 1536 | 384 | 384 | 96 | 75.6 | +5.1 |
10% | 1728 | 192 | 432 | 48 | 67.6 | +6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, G.; Zhang, H.; Xu, K.; Pan, L.; Huang, L.; Huang, X.; Wei, Y. LarGAN: A Label Auto-Rescaling Generation Adversarial Network for Rare Surface Defects. Sensors 2025, 25, 2958. https://doi.org/10.3390/s25102958
Qin G, Zhang H, Xu K, Pan L, Huang L, Huang X, Wei Y. LarGAN: A Label Auto-Rescaling Generation Adversarial Network for Rare Surface Defects. Sensors. 2025; 25(10):2958. https://doi.org/10.3390/s25102958
Chicago/Turabian StyleQin, Guan, Hanxin Zhang, Ke Xu, Liaoting Pan, Lei Huang, Xuezhong Huang, and Yi Wei. 2025. "LarGAN: A Label Auto-Rescaling Generation Adversarial Network for Rare Surface Defects" Sensors 25, no. 10: 2958. https://doi.org/10.3390/s25102958
APA StyleQin, G., Zhang, H., Xu, K., Pan, L., Huang, L., Huang, X., & Wei, Y. (2025). LarGAN: A Label Auto-Rescaling Generation Adversarial Network for Rare Surface Defects. Sensors, 25(10), 2958. https://doi.org/10.3390/s25102958