Dual-Mode Solidly Mounted Resonator-Based Sensor for Temperature and Humidity Detection and Discrimination
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hashimoto, K. RF Bulk Acoustic Wave Filters for Communications; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Ballantine, D., Jr.; Robert, W.; Martin, S.; Antonio, R.; Zellers, E.; Frye, G.; Wohltjen, H. Acoustic Wave Sensors; Academic Press Inc.: Cambridge, MA, USA, 1996. [Google Scholar]
- Zhgoon, S.; Shvetsov, A.; Ancev, I.; Bogoslovsky, S.; Sapozhnikov, G.; Trokhimets, K.; Derkach, M. SAW temperature sensor on Quartz. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Xuan, W.; Dong, S.; Wang, X.; Li, H.; Yu, L.; Luo, J. Temperature calibrated on-chip dual-mode film bulk acoustic resonator pressure sensor with a sealed back-trench cavity. J. Micromech. Microeng. 2018, 28, 075010. [Google Scholar] [CrossRef]
- Lim, C.; Wang, W.; Yang, S.; Lee, K. Development of SAW-based multi-gas sensor for simultaneous detection of CO2 and NO2. Sens. Actuators B Chem. 2011, 154, 9–16. [Google Scholar] [CrossRef]
- Wang, X.; Cui, F.; Lin, J.; Ding, B.; Yu, J.; Al-Deyab, S.S. Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor. Sens. Actuators B Chem. 2012, 171–172, 658–665. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.J.; Li, D.H.; Xu, Y. Hydrogen sensor based on Pd-functionalized film bulk acoustic resonator. Sens. Actuators B Chem. 2011, 159, 234–237. [Google Scholar] [CrossRef]
- Han, C.; Wang, X.; Zhao, Q.; Teng, L.; Zhang, S.; Lv, H.; Liu, J.; Ma, H.; Wang, Y. Solidly mounted resonator sensor for biomolecule detections. RSC Adv. 2019, 9, 21323–21328. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Flewitt, A.J.; Cai, Z.; Zhao, X. Film bulk acoustic resonators (FBARs) as biosensors: A review. Biosens. Bioelectron. 2018, 16, 1–15. [Google Scholar] [CrossRef]
- Weber, J.; Albers, W.M.; Tuppurainen, J.; Link, M.; Gabl, R.; Wersing, W.; Schreiter, M. Shear mode FBARs as highly sensitive liquid biosensors. Sens. Actuators A Phys. 2006, 128, 84–88. [Google Scholar] [CrossRef]
- King, W.H. Piezoelectric Sorption Detector. Anal. Chem. 1964, 36, 1735–1739. [Google Scholar] [CrossRef]
- Wajid, A. On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions. Sens. Actuators A Phys. 1997, 63, 41–46. [Google Scholar] [CrossRef]
- Zhang, C.; Kaluvan, S.; Zhang, H.; Wang, G.; Zuo, L. A study on the Langmuir adsorption for quartz crystal resonator based low pressure CO2 gas sensor. Measurement 2018, 124, 286–290. [Google Scholar] [CrossRef]
- Shim, D.Y.; Chang, S.M.; Kim, J.M. Development of fast resettable gravimetric aromatic gas sensors using quartz crystal microbalance. Sens. Actuators B Chem. 2021, 329, 129143. [Google Scholar] [CrossRef]
- Oliver, M.J.; Hernando-García, J.; Pobedinskas, P.; Haenen, K.; Ríos, A.; Sánchez-Rojas, J.L. Reusable chromium-coated quartz crystal microbalance for immunosensing. Colloids. Surf. B Biointerfaces 2011, 88, 191–195. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Yu, J.; Wang, M.; Pan, F. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 2010, 21, 055502. [Google Scholar] [CrossRef]
- Yao, Y.; Xue, Y. Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuators B Chem. 2015, 211, 52–58. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Cai, H.; Ali, M.M.; Tian, X.; Tao, L.; Yang, Y.; Ren, T. Surface acoustic wave devices for sensor applications. J. Semicond. 2016, 37, 021001. [Google Scholar] [CrossRef]
- Borrero, G.A.; Bravo, J.P.; Mora, S.F.; Velásquez, S.; Segura-Quijano, F.E. Design and fabrication of SAW pressure, temperature and impedance sensors using novel multiphysics simulation models. Sens. Actuators A Phys. 2013, 203, 204–214. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, Y.; Cai, H.; Ren, T.L.; Chan, M.; Yang, C.Y. Temperature-compensated high-frequency surface acoustic wave device. IEEE Electron. Dev. Lett. 2013, 34, 1572–1574. [Google Scholar] [CrossRef]
- Xuan, W.; He, M.; Meng, N.; He, X.; Wang, W.; Chen, J.; Shi, T.; Hasan, T.; Xu, Z.; Xu, Y.; et al. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer. Sci. Rep. 2014, 4, 7206. [Google Scholar] [CrossRef]
- Rodríguez-Madrid, J.G.; Iriarte, G.F.; Williams, O.A.; Calle, F. High precision pressure sensors based on SAW devices in the GHz range. Sens. Actuators A Phys. 2013, 189, 364–369. [Google Scholar] [CrossRef]
- Peng, Y.-C.; Cheng, C.-H.; Yatsuda, H.; Liu, S.-H.; Liu, S.-J.; Kogai, T.; Kuo, C.-Y.; Wang, R.Y.L. A Novel Rapid Test to Detect Anti-SARS-CoV-2 N Protein IgG Based on Shear Horizontal Surface Acoustic Wave (SH-SAW). Diagnostics 2021, 11, 1838. [Google Scholar] [CrossRef]
- Ji, J.; Yang, C.; Zhang, F.; Shang, Z.; Xu, Y.; Chen, Y.; Chen, M.; Mu, X. A high sensitive SH-SAW biosensor based 36° Y-X black LiTaO3 for label-free detection of Pseudomonas Aeruginosa. Sens. Actuators B Chem. 2019, 281, 757–764. [Google Scholar] [CrossRef]
- Chiu, K.H.; Chen, H.R.; Huang, S.R.S. High-performance film bulk acoustic wave pressure and temperature sensors. Jap. J. Appl. Phys. Part 1 Reg. Pap. Short Notes Rev. Pap. 2007, 46, 1392–1397. [Google Scholar] [CrossRef]
- He, X.; Garcia-Gancedo, L.; Jin, P.; Zhou, J.; Flewitt, A.; Milne, W.; Luo, J. A single FBAR-based temperature and pressure sensors. Key Eng. Mater. 2013, 562–565, 188–191. [Google Scholar] [CrossRef]
- Zhao, J.; Xing, Y.; Han, J.; Lin, W.; Yun, X.; Sun, Y.; Zhou, X.; Wang, Z.; Cao, X.; Zhang, B.; et al. The research of dual-mode film bulk acoustic resonator for enhancing temperature sensitivity. Semicond. Sci. Technol. 2020, 36, 025018. [Google Scholar] [CrossRef]
- Lin, W.; Yun, X.; Wang, X.; Zeng, Z.; Wang, Y.; Zhang, X.; Zeng, C.; Zhang, B. Super-high sensitivity FBAR temperature sensor based on size effect of Ti insertion layer. Mater. Res. Express 2021, 8, 095701. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Fang, Z.; Liu, Z.; Zhu, Y.; Du, L. High-performance FBAR humidity sensor based on the PI film as the multifunctional layer. Sens. Actuators B Chem. 2020, 308, 127694. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, P.; Liu, J.; Du, L.; Fang, Z.; Zhao, Z. PI-Based Dual-Mode FBAR Humidity Sensor Toward Ultra-High Sensitivity and Self-Temperature-Compensation Capability. IEEE Sens. J. 2021, 21, 26574–26585. [Google Scholar] [CrossRef]
- Bjurström, J.; Wingqvist, G.; Yantchev, V.; Katardjiev, I. Temperature compensation of liquid FBAR sensors. J. Micromech. Microeng. 2007, 17, 651–658. [Google Scholar] [CrossRef]
- Ivira, B.; Benech, P.; Fillit, R.; Ndagijimana, F.; Ancey, P.; Parat, G. Modeling for temperature compensation and temperature characterizations of BAW resonators at GHz frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 421–430. [Google Scholar] [CrossRef]
- Reusch, M.; Holc, K.; Lebedev, V.; Kurz, N.; Zukauskaite, A.; Ambacher, O. Temperature Cross-Sensitivity of AlN-Based Flexural Plate Wave Sensors. IEEE Sens. J. 2018, 18, 7810–7818. [Google Scholar] [CrossRef]
- García-Gancedo, L.; Pedrós, J.; Zhao, X.; Ashley, G.; Flewitt, A.; Milne, W.; Ford, C.; Lu, J.; Luo, J. Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading. Biosens. Bioelectron. 2012, 38, 369–374. [Google Scholar] [CrossRef]
- Mu, X.; Kropelnicki, P.; Wang, Y.; Randles, A.B.; Chai, K.T.C.; Cai, H.; Gu, Y.D. Dual mode acoustic wave sensor for precise pressure reading. Appl. Phys. Lett. 2014, 105, 113507. [Google Scholar] [CrossRef]
- Zou, Y.; Nian, L.; Cai, Y.; Liu, Y.; Tovstopyat, A.; Liu, W.; Sun, C. Dual-mode thin film bulk acoustic wave resonator and filter. J. Appl. Phys. 2020, 128, 194503. [Google Scholar] [CrossRef]
- Mirea, T.; Clement, M.; Olivares, J.; Iborra, E. Assessment of the Absolute Mass Attachment to an AlN-Based Solidly Mounted Resonator Using a Single Shear Mode. IEEE Electron. Dev. Lett. 2020, 41, 609–612. [Google Scholar] [CrossRef]
- Sorex Sensors, Ltd. Available online: www.sorexsensors.com (accessed on 4 March 2024).
- Mirea, T.; Chiodarelli, N.; Moreno, M.; Demiguel-Ramos, M. Portable Network Analyzers For Full Characterization of FBAR Sensors: Influence of Readout Parameters On Sensor Performance. In Proceedings of the 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Gainesville, FL, USA, 7–17 July 2021. [Google Scholar] [CrossRef]
- Duan, Z.; Jiang, Y.; Zhao, Q.; Wang, S.; Yuan, Z.; Zhang, Y.; Liu, B.; Tai, H. Facile and low-cost fabrication of a humidity sensor using naturally available sepiolite nanofibers. Nanotechnology 2020, 31, 355501. [Google Scholar] [CrossRef]
- Xuan, W.; Cole, M.; Gardner, J.W.; Thomas, S.; Villa-López, F.-H.; Wang, X.; Dong, S.; Luo, J. A film bulk acoustic resonator oscillator based humidity sensor with graphene oxide as the sensitive layer. J. Micromech. Microeng. 2017, 27, 055017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Cejas, J.M.; Mirea, T.; Hervás-García, R.; Olivares, J.; Clement, M. Dual-Mode Solidly Mounted Resonator-Based Sensor for Temperature and Humidity Detection and Discrimination. Sensors 2024, 24, 2877. https://doi.org/10.3390/s24092877
Carmona-Cejas JM, Mirea T, Hervás-García R, Olivares J, Clement M. Dual-Mode Solidly Mounted Resonator-Based Sensor for Temperature and Humidity Detection and Discrimination. Sensors. 2024; 24(9):2877. https://doi.org/10.3390/s24092877
Chicago/Turabian StyleCarmona-Cejas, José Manuel, Teona Mirea, Ricardo Hervás-García, Jimena Olivares, and Marta Clement. 2024. "Dual-Mode Solidly Mounted Resonator-Based Sensor for Temperature and Humidity Detection and Discrimination" Sensors 24, no. 9: 2877. https://doi.org/10.3390/s24092877
APA StyleCarmona-Cejas, J. M., Mirea, T., Hervás-García, R., Olivares, J., & Clement, M. (2024). Dual-Mode Solidly Mounted Resonator-Based Sensor for Temperature and Humidity Detection and Discrimination. Sensors, 24(9), 2877. https://doi.org/10.3390/s24092877