A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery
Abstract
:1. Introduction
2. Related Work
2.1. Grounded Haptic Device in Teleoperated RAMS
2.2. Wearable Haptic Device in RAMS
3. Methodology
3.1. System Overview
3.2. Motion Tracking
3.2.1. Vision-Based Motion Tracking
3.2.2. Inertial Motion Tracking
3.2.3. Multi-Sensor Fusion
3.3. Haptic Device
3.3.1. Design
3.3.2. Fabrication
3.3.3. Actuation
4. Experiments and Results Analysis
4.1. Evaluation of Motion Tracking
4.1.1. Experiment Design and Evaluation Metrics
- Root-mean-squared error (RMSE): This metric quantifies the deviation between the actual motion path and the predefined trajectory , which can be calculated by , where n is the number of points. RMSE offers a clear indicator of the tracking precision.
- Total path length D: Calculated by summing the end-effector’s trajectories throughout the task using Euclidean distances. This metric provides insight into the efficiency and smoothness of the motion.
- Tracking detection rate: To quantify the reliability of the motion tracking algorithms, we measured the detection rate , which represents the proportion of successfully detected frames out of the total frames N. This rate indicates the consistency of the tracking system.
4.1.2. Results Analysis
4.2. Evaluation of Haptic Feedback
4.2.1. Experiment Design and Evaluation Metrics
- Depth: We measured the depth of micro-needle insertion into the tissue model to assess users’ perception of depth during the task. As illustrated in Figure 4, this displayed the trajectory of needle insertion under both haptic and non-haptic feedback conditions. The local minima in the depth trajectory correspond to the points where the participant believed they reached the target depth. Analyzing these minima revealed differences in users’ perception of target depth with and without haptic feedback.
- Depth errors: We quantified the difference between the actual reached depth and the preset target depth, as shown in Figure 5. Depth errors were calculated from the deviations between each local minimum of the depth trajectory and the set target depth. This metric further revealed the differences in users’ depth perception errors between conditions with and without haptic feedback.
- Success rate: Success was quantified as a depth error within ±2500 micrometers. Figure 6 documents the number of successful and unsuccessful attempts made by the six participants to reach the set target depth within the experimental duration under both haptic and non-haptic feedback scenarios. This metric is critical for evaluating the effectiveness of micro-needle manipulation.
- NASA-TLX scores: To assess the cognitive and physical demands placed on participants, we used the NASA-TLX assessment. This tool evaluates mental (Q1), physical (Q2), and temporal (Q3) demands, as well as effort (Q4), performance (Q5), and frustration (Q6) experienced by participants while using the proposed framework. Scores range from 0 to 20 across six weighted subcategories, with lower scores indicating a lower workload or better task performance. This comprehensive assessment, shown in Figure 7, provides insights into the overall user experience and workload while using the microsurgical system.
4.2.2. Results Analysis
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iordachita, I.I.; De Smet, M.D.; Naus, G.; Mitsuishi, M.; Riviere, C.N. Robotic assistance for intraocular microsurgery: Challenges and perspectives. Proc. IEEE 2022, 110, 893–908. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, J.; Li, W.; Bautista Salinas, D.; Yang, G.Z. A microsurgical robot research platform for robot-assisted microsurgery research and training. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Si, W.; Fan, W.; Guan, Y.; Yang, C. From teleoperation to autonomous robot-assisted microsurgery: A survey. Mach. Intell. Res. 2022, 19, 288–306. [Google Scholar] [CrossRef]
- Van Koughnett, J.A.; Jayaraman, S.; Eagleson, R.; Quan, D.; van Wynsberghe, A.; Schlachta, C.M. Are there advantages to robotic-assisted surgery over laparoscopy from the surgeon’s perspective? J. Robot. Surg. 2009, 3, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Guo, Y.; Chen, J.; Liu, J.; Yang, G.Z. A handheld master controller for robot-assisted microsurgery. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 394–400. [Google Scholar]
- Van der Meijden, O.A.; Schijven, M.P. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: A current review. Surg. Endosc. 2009, 23, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Guo, X.; Fan, W.; Li, W.; Wang, Y.; Liang, J.; Liu, J.; Liu, W.; Wei, L.; Zhang, D. Tims: A tactile internet-based micromanipulation system with haptic guidance for surgical training. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 5114–5121. [Google Scholar]
- Saracino, A.; Deguet, A.; Staderini, F.; Boushaki, M.N.; Cianchi, F.; Menciassi, A.; Sinibaldi, E. Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks. Int. J. Med Robot. Comput. Assist. Surg. 2019, 15, e1999. [Google Scholar] [CrossRef] [PubMed]
- Pacchierotti, C.; Prattichizzo, D.; Kuchenbecker, K.J. Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Trans. Biomed. Eng. 2015, 63, 278–287. [Google Scholar] [CrossRef]
- Lum, M.J.; Friedman, D.C.; Sankaranarayanan, G.; King, H.; Fodero, K.; Leuschke, R.; Hannaford, B.; Rosen, J.; Sinanan, M.N. The RAVEN: Design and validation of a telesurgery system. Int. J. Robot. Res. 2009, 28, 1183–1197. [Google Scholar] [CrossRef]
- Fan, W.; Guo, X.; Feng, E.; Lin, J.; Wang, Y.; Liang, J.; Garrad, M.; Rossiter, J.; Zhang, Z.; Lepora, N.; et al. Digital Twin-Driven Mixed Reality Framework for Immersive Teleoperation With Haptic Rendering. IEEE Robot. Autom. Lett. 2023, 8, 8494–8501. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Tirmizi, A.; Prattichizzo, D. Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Trans. Appl. Percept. (TAP) 2014, 11, 1–16. [Google Scholar] [CrossRef]
- Perez, A.G.; Lobo, D.; Chinello, F.; Cirio, G.; Malvezzi, M.; San Martín, J.; Prattichizzo, D.; Otaduy, M.A. Soft finger tactile rendering for wearable haptics. In Proceedings of the 2015 IEEE world haptics conference (WHC), Evanston, IL, USA, 22–26 June 2015; pp. 327–332. [Google Scholar]
- Tsetserukou, D.; Hosokawa, S.; Terashima, K. LinkTouch: A wearable haptic device with five-bar linkage mechanism for presentation of two-DOF force feedback at the fingerpad. In Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS), Houston, TX, USA, 23–26 February 2014; pp. 307–312. [Google Scholar]
- Pacchierotti, C.; Salvietti, G.; Hussain, I.; Meli, L.; Prattichizzo, D. The hRing: A wearable haptic device to avoid occlusions in hand tracking. In Proceedings of the 2016 IEEE Haptics Symposium (HAPTICS), Philadelphia, PA, USA, 8–11 April 2016; pp. 134–139. [Google Scholar]
- Fani, S.; Ciotti, S.; Battaglia, E.; Moscatelli, A.; Bianchi, M. W-FYD: A wearable fabric-based display for haptic multi-cue delivery and tactile augmented reality. IEEE Trans. Haptics 2017, 11, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Kusakabe, A.; Kazama, Y.; Kawasaki, H. Haptic interface for displaying softness at multiple fingers: Combining a side-faced-type multifingered haptic interface robot and improved softness-display devices. IEEE/ASME Trans. Mechatron. 2016, 21, 2343–2351. [Google Scholar] [CrossRef]
- Mun, S.; Yun, S.; Nam, S.; Park, S.K.; Park, S.; Park, B.J.; Lim, J.M.; Kyung, K.U. Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans. Haptics 2018, 11, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Boys, H.; Frediani, G.; Ghilardi, M.; Poslad, S.; Busfield, J.C.; Carpi, F. Soft wearable non-vibratory tactile displays. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; pp. 270–275. [Google Scholar]
- Lee, H.S.; Phung, H.; Lee, D.H.; Kim, U.K.; Nguyen, C.T.; Moon, H.; Koo, J.C.; Choi, H.R. Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sens. Actuators A Phys. 2014, 205, 191–198. [Google Scholar] [CrossRef]
- Song, K.; Kim, S.H.; Jin, S.; Kim, S.; Lee, S.; Kim, J.S.; Park, J.M.; Cha, Y. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci. Rep. 2019, 9, 8988. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.L.; Peiris, R.L.; Fernando, C.L.; Minamizawa, K. 3D printed haptics: Creating pneumatic haptic display based on 3D printed airbags. In Proceedings of the Haptics: Science, Technology, and Applications: 11th International Conference, EuroHaptics 2018, Pisa, Italy, 13–16 June 2018; Proceedings, Part II 11. Springer: Berlin/Heidelberg, Germany, 2018; pp. 180–192. [Google Scholar]
- Taniguchi, T.; Sakurai, S.; Nojima, T.; Hirota, K. Multi-point pressure sensation display using pneumatic actuators. In Proceedings of the Haptics: Science, Technology, and Applications: 11th International Conference, EuroHaptics 2018, Pisa, Italy, 13–16 June 2018; Proceedings, Part II 11. Springer: Berlin/Heidelberg, Germany, 2018; pp. 58–67. [Google Scholar]
- Perret, J.; Vander Poorten, E. Commercial haptic gloves. In The Industrial Track of EuroVR 2018, Proceedings of the 15th Annual EuroVR Conference, London, UK, 22–23 October 2018; VTT Technology, VTT Technical Research Centre of Finland: Espoo, Finland, 2018; pp. 39–48. [Google Scholar]
- Gu, C.; Hou, Q.; Ge, Z.; Teng, Z.; Zhao, P. Design of a Training and Evaluation System for Surgical Robot Operation Based on Chai3d and LSTM Algorithm. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual, Online, 1–5 November 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 85598, p. V005T05A065. [Google Scholar]
- Quek, Z.F.; Schorr, S.B.; Nisky, I.; Provancher, W.R.; Okamura, A.M. Sensory substitution using 3-degree-of-freedom tangential and normal skin deformation feedback. In Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS), Houston, TX, USA, 23–26 February 2014; pp. 27–33. [Google Scholar]
- Han, A.K.; Bae, J.H.; Gregoriou, K.C.; Ploch, C.J.; Goldman, R.E.; Glover, G.H.; Daniel, B.L.; Cutkosky, M.R. MR-compatible haptic display of membrane puncture in robot-assisted needle procedures. IEEE Trans. Haptics 2018, 11, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Kessler, G.D.; Hodges, L.F.; Walker, N. Evaluation of the CyberGlove as a whole-hand input device. ACM Trans. Comput.-Hum. Interact. (TOCHI) 1995, 2, 263–283. [Google Scholar] [CrossRef]
- Kovacs, R.; Ofek, E.; Gonzalez Franco, M.; Siu, A.F.; Marwecki, S.; Holz, C.; Sinclair, M. Haptic PIVOT: On-demand handhelds in VR. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 20–23 October 2020; pp. 1046–1059. [Google Scholar]
- Yin, J.; Hinchet, R.; Shea, H.; Majidi, C. Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 2021, 31, 2007428. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Chinello, F.; Prattichizzo, D. Cutaneous device for teleoperated needle insertion. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 32–37. [Google Scholar]
- Pacchierotti, C.; Sinclair, S.; Solazzi, M.; Frisoli, A.; Hayward, V.; Prattichizzo, D. Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives. IEEE Trans. Haptics 2017, 10, 580–600. [Google Scholar] [CrossRef] [PubMed]
- Shultz, C.; Harrison, C. Flat Panel Haptics: Embedded Electroosmotic Pumps for Scalable Shape Displays. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–16. [Google Scholar]
- Frediani, G.; Carpi, F. Tactile display of softness on fingertip. Sci. Rep. 2020, 10, 20491. [Google Scholar] [CrossRef]
- Wu, W.; Liu, H.; Li, L.; Long, Y.; Wang, X.; Wang, Z.; Li, J.; Chang, Y. Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image. PLoS ONE 2021, 16, e0259283. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.; Hainsworth, T.; MacCurdy, R. Liquid–solid co-printing of multi-material 3D fluidic devices via material jetting. Addit. Manuf. 2022, 55, 102785. [Google Scholar] [CrossRef]
- Hart, S.G. NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; Sage Publications: Sage, CA, USA; Los Angeles, CA, USA, 2006; Volume 50, pp. 904–908. [Google Scholar]
Shore A | 30 A | 50 A | 70 A |
---|---|---|---|
0.5 S | 0.22 | 0.20 | 0.19 |
1 S | 0.35 | 0.31 | 0.26 |
1.5 S | 0.45 | 0.31 | 0.30 |
Mean | 0.34 | 0.27 | 0.25 |
Shore A | 30 A | 50 A | 70 A |
---|---|---|---|
0.5 S | 0.21 | 0.20 | 0.17 |
1 S | 0.35 | 0.38 | 0.27 |
1.5 S | 0.42 | 0.32 | 0.30 |
Mean | 0.32 | 0.27 | 0.25 |
Pose Estimation Method | Depth (cm) | |||
---|---|---|---|---|
Marker-less | 4 | 157 | 194 | 0.81 |
Marker-based | 4 | 281 | 283 | 0.99 |
Marker-less | 8 | 184 | 207 | 0.89 |
Marker-based | 8 | 246 | 253 | 0.97 |
Marker-less | 12 | 119 | 172 | 0.69 |
Marker-based | 12 | 149 | 259 | 0.58 |
Filter | Plane | RMSE | D Errors |
---|---|---|---|
KF | x−y | 0.306 | 0.848 |
EKF | x−y | 0.224 | 0.276 |
UKF | x−y | 0.246 | 0.152 |
KF | x−z | 0.642 | 2.426 |
EKF | x−z | 0.640 | 2.842 |
UKF | x−z | 0.580 | 2.722 |
KF | y−z | 0.730 | 2.418 |
EKF | y−z | 0.616 | 2.648 |
UKF | y−z | 0.559 | 2.672 |
User1 | User2 | User3 | User4 | User5 | User6 | |
---|---|---|---|---|---|---|
with | 1525.7 | 436.48 | 728.3 | 373.8 | 1489.4 | 1422.3 |
without | 3988.3 | 7349.4 | 837.5 | 5464.5 | 2347.7 | 2746.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; McFall, F.; Jiang, P.; Liu, J.; Lepora, N.; Zhang, D. A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery. Sensors 2024, 24, 2676. https://doi.org/10.3390/s24092676
Guo X, McFall F, Jiang P, Liu J, Lepora N, Zhang D. A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery. Sensors. 2024; 24(9):2676. https://doi.org/10.3390/s24092676
Chicago/Turabian StyleGuo, Xiaoqing, Finn McFall, Peiyang Jiang, Jindong Liu, Nathan Lepora, and Dandan Zhang. 2024. "A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery" Sensors 24, no. 9: 2676. https://doi.org/10.3390/s24092676
APA StyleGuo, X., McFall, F., Jiang, P., Liu, J., Lepora, N., & Zhang, D. (2024). A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery. Sensors, 24(9), 2676. https://doi.org/10.3390/s24092676