Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mini-Greenhouse Description
2.2. Sensor System
2.3. The Principles of Modeling the Greenhouse Heat Transfer
- Qsolar [W]—total solar radiation;
- Qe [W]—latent heat energy flux due to evapotranspiration of the plant;
- Qcond [W]—heat energy flux transferred by conduction and convection;
- Qv [W]—heat energy flux transferred due to air exchange;
- Qt [W]—heat energy flux lost by the transfer of longwave radiation.
- τ—transmissivity of the mini-greenhouse material;
- Shading—shading coefficient;
- G [W/m2]—global irradiance on the horizontal plane received per unit area and per unit time;
- Gb [W/m2]—beam horizontal irradiance;
- Gd [W/m2]—diffuse horizontal irradiance;
- GT [W/m2]—irradiance on tilted surfaces;
- GbT [W/m2]—beam irradiance on tilted surfaces;
- GdT [W/m2]—diffuse irradiance on tilted surfaces;
- GrT [W/m2]—reflected irradiance;
- Asi [m2]—the receiving surface area;
- is—incidence angle of the sun rays;
- β—surface’s inclination angle with regard to the horizontal plane;
- γ—surface’s azimuth;
- γs—solar azimuth;
- αs—solar altitude.
- G [W/m2]—global irradiance on the horizontal plane received per unit area and per unit time;
- Getr [W/m2]—extraterrestrial global horizontal solar irradiance;
- Gd [W/m2]—diffuse horizontal irradiance;
- kt—clearness index;
- kd—diffuse fraction.
- MT [kgH2O/s·m2]—rate of transpiration (2.8);
- Lv [J/kgH2O]—latent heat of the vaporization of water (2,265,000);
- Asol [m2]—the ground area of the mini-greenhouse (0.6·0.45 = 0.27).
- U [W/m2·K]—mini-greenhouse thermal transmittance (5.586);
- Aext [m2]—exterior area of the mini-greenhouse (1.39, calculated using the geometric model);
- Tin [°C]—indoor air temperature (will be computed);
- Tout [°C]—outdoor air temperature (see Table A2).
- 0.33 [h·J/(kg·K)]—coefficient that takes into account the seconds–hours transformation, density, and specific heat of the air;
- na [h−1]—number of air changes per hour (0.5);
- V [m3]—greenhouse volume (0.162, calculated using the geometric model).
- σ [W/m2·K4]—Stefan–Boltzmann’s constant (5.67 × 10−8);
- εi []—emissivity of the interior greenhouse material (0.94);
- εcer []—apparent emissivity of the sky (Equation (18));
- e0 [Pa]—outdoor vapor pressure at To (see Table A2);
- To [K]—outdoor temperature at a standard height (considered equal to the outdoor temperature);
- Tcer [K]—sky temperature (Equation (19)).
3. Results and Discussion
3.1. Results on the ThingSpeak Platform
3.2. Comparison of Calculations with Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
“created_at:” | “entry_id:” | “field1:” (Temperature, °C) | “field2:” (Humidity, %) | “field4:” (Pressure, mBar) | Local Time (Bucharest) | Time (Decimal) |
---|---|---|---|---|---|---|
2022-07-12T09:23:52Z | 84158 | 24.6 | 41.7 | 1012.69 | 12:23 | 12.38 |
2022-07-12T09:40:43Z | 84169 | 34 | 36 | 1007.87 | 12:40 | 12.67 |
2022-07-12T10:00:15Z | 84236 | 45.5 | 23.9 | 1007.66 | 13:00 | 13 |
2022-07-12T10:30:06Z | 84338 | 44.5 | 23.8 | 1009.13 | 13:30 | 13.5 |
2022-07-12T11:00:01Z | 84441 | 38.8 | 26.4 | 1009.32 | 14:00 | 14 |
2022-07-12T11:30:15Z | 84545 | 45.4 | 22.6 | 1009.68 | 14:30 | 14.5 |
2022-07-12T12:00:04Z | 84646 | 44.8 | 23.2 | 1010.54 | 15:00 | 15 |
2022-07-12T12:30:07Z | 84749 | 34.5 | 26.3 | 1011.53 | 15:30 | 15.5 |
2022-07-12T13:00:07Z | 84850 | 33.1 | 26 | 1011.36 | 16:00 | 16 |
2022-07-12T13:21:41Z | 84924 | 31.1 | 27.8 | 1011.16 | 16:21 | 16.35 |
2022-07-12T14:11:38Z | 84925 | 31.2 | 27.8 | 1011.09 | 17:11 | 17.18 |
2023-07-03T13:00:09Z | 85452 | 32 | 49.5 | 997.4 | 16:00 | 16 |
2023-07-03T13:22:24Z | 85534 | 56.7 | 25.9 | 993.9 | 16:22 | 16.37 |
2023-07-03T15:15:00Z | 85585 | 30.3 | 52.4 | 1000.1 | 18:15 | 18.25 |
2023-07-03T15:30:23Z | 85641 | 35.3 | 44.5 | 1000.44 | 18:30 | 18.5 |
2023-07-03T15:45:00Z | 85695 | 36.1 | 44 | 1000.69 | 18:45 | 18.75 |
2023-07-03T15:57:39Z | 85741 | 36.3 | 43.8 | 1000.54 | 18:57 | 18.95 |
2023-07-04T04:52:52Z | 85743 | 24.6 | 66.9 | 1004.09 | 7:52 | 7.87 |
2023-07-04T05:00:00Z | 85763 | 27 | 61.8 | 1003.97 | 8:00 | 8 |
2023-07-04T05:03:17Z | 85775 | 28.1 | 58.6 | 1004.07 | 8:03 | 8.05 |
2023-07-04T12:40:06Z | 85787 | 27.5 | 58 | 998.59 | 15:40 | 15.67 |
2023-07-04T12:47:41Z | 85814 | 41.7 | 36.1 | 998.84 | 15:47 | 15.78 |
2023-07-04T14:03:54Z | 85825 | 27.2 | 57.4 | 1001.4 | 17:03 | 17.05 |
2023-07-04T14:15:06Z | 85858 | 42.7 | 35 | 1002.02 | 17:15 | 17.25 |
2023-07-04T14:30:08Z | 85913 | 41.4 | 35.3 | 1002.14 | 17:30 | 17.5 |
2023-07-04T14:45:12Z | 85968 | 40.6 | 35.1 | 1002.03 | 17:45 | 17.75 |
2023-07-04T15:00:14Z | 86023 | 40.1 | 36.4 | 1001.86 | 18:00 | 18 |
2023-07-04T15:15:04Z | 86050 | 43.3 | 33.6 | 1001.37 | 18:15 | 18.25 |
2023-07-04T15:30:00Z | 86084 | 44.2 | 33.9 | 1001.49 | 18:30 | 18.5 |
2023-07-04T15:45:13Z | 86140 | 41.8 | 34.4 | 1001.56 | 18:45 | 18.75 |
2023-07-04T16:00:10Z | 86195 | 39.1 | 36.4 | 1001.76 | 19:00 | 19 |
2023-07-04T16:15:07Z | 86250 | 37.7 | 38.1 | 1001.7 | 19:18 | 19.3 |
2023-07-04T16:29:47Z | 86304 | 36.5 | 39.8 | 1001.82 | 19:29 | 19.48 |
2023-08-16T14:22:39Z | 90350 | 32 | 49.7 | 1004.9 | 17:22 | 14.37 |
2023-08-16T15:00:06Z | 90483 | 46.1 | 28 | 1005.52 | 18:00 | 15 |
2023-08-16T16:00:12Z | 90698 | 34 | 37 | 1006.08 | 19:00 | 16 |
2023-08-16T17:00:01Z | 90909 | 30.4 | 41.3 | 1006.43 | 20:00 | 17 |
2023-08-16T18:00:24Z | 91114 | 28.4 | 44.2 | 1006.59 | 21:00 | 18 |
2023-08-16T19:00:03Z | 91322 | 27 | 47.7 | 1006.79 | 22:00 | 19 |
2023-08-16T20:00:07Z | 91532 | 25.7 | 52.4 | 1006.9 | 23:00 | 20 |
2023-08-16T21:00:13Z | 91744 | 24.5 | 55.2 | 1006.59 | 0:00 | 21 |
2023-08-16T22:00:06Z | 91958 | 23.4 | 58.8 | 1006.5 | 1:00 | 22 |
2023-08-16T23:00:04Z | 92160 | 23 | 62 | 1006.27 | 2:00 | 23 |
2023-08-17T00:00:11Z | 92375 | 22.7 | 63.6 | 1006.18 | 3:00 | 0 |
2023-08-17T01:00:07Z | 92590 | 22.1 | 65.8 | 1005.83 | 4:00 | 1 |
2023-08-17T02:00:12Z | 92806 | 21.7 | 66.5 | 1005.89 | 5:00 | 2 |
2023-08-17T03:00:06Z | 93019 | 21.4 | 68.6 | 1005.88 | 6:00 | 3 |
2023-08-17T04:00:11Z | 93232 | 21.9 | 68.2 | 1005.96 | 7:00 | 4 |
2023-08-17T05:00:09Z | 93445 | 23.8 | 63.6 | 1006.23 | 8:00 | 5 |
2023-08-17T06:00:00Z | 93658 | 25.7 | 59.7 | 1006.02 | 9:00 | 6 |
2023-08-17T07:00:03Z | 93874 | 27.6 | 56.6 | 1006.34 | 10:00 | 7 |
2023-08-17T08:31:05Z | 94009 | 47.7 | 28 | 1006.9 | 11:00 | 8 |
2023-08-17T09:00:08Z | 94111 | 57.3 | 24.2 | 1004.2 | 12:00 | 9 |
2023-08-17T16:26:56Z | 94130 | 31.4 | 37.6 | 1005.07 | 19:26 | 16.43 |
2023-08-17T17:00:07Z | 94247 | 31.1 | 38.5 | 1005.14 | 20:00 | 17 |
2023-08-17T18:00:07Z | 94461 | 29.7 | 40.7 | 1005.51 | 21:00 | 18 |
2023-09-26T06:16:07Z | 95753 | 25 | 42.1 | 1011.22 | 9:16 | 9.27 |
2023-09-26T07:00:12Z | 95858 | 23.6 | 44.8 | 1011.19 | 10:00 | 10 |
2023-09-26T08:00:12Z | 96018 | 24.5 | 43.1 | 1011.16 | 11:00 | 11 |
2023-09-26T09:46:25Z | 96036 | 48.8 | 23.4 | 1010.4 | 12:00 | 12 |
2023-09-26T10:00:14Z | 96086 | 51.8 | 22.6 | 1010.7 | 13:00 | 13 |
2023-09-26T11:00:08Z | 96301 | 51.7 | 21.6 | 1010.62 | 14:00 | 14 |
2023-09-26T12:00:12Z | 96516 | 42.3 | 23.8 | 1010.03 | 15:00 | 15 |
2023-09-26T13:00:10Z | 96731 | 34.6 | 27 | 1010.33 | 16:00 | 16 |
2023-09-26T14:00:09Z | 96945 | 32.2 | 27.1 | 1010.45 | 17:00 | 17 |
2023-09-26T15:00:18Z | 97160 | 30.6 | 29.3 | 1010.36 | 18:00 | 18 |
2023-09-26T16:00:03Z | 97371 | 25.8 | 34.2 | 1010.52 | 19:00 | 19 |
2023-09-26T17:14:05Z | 97400 | 23.5 | 40.5 | 1011.15 | 20:14 | 20.23 |
2023-09-26T18:00:14Z | 97563 | 22.7 | 42.7 | 1011.39 | 21:00 | 21 |
2023-09-26T19:00:09Z | 97777 | 21.6 | 45.8 | 1011.42 | 22:00 | 22 |
2023-09-26T20:00:01Z | 97990 | 20.5 | 48.6 | 1011.53 | 23:00 | 23 |
2023-09-26T21:00:01Z | 98202 | 19.2 | 51.8 | 1011.52 | 0:00 | 0 |
2023-09-26T22:00:10Z | 98431 | 18.8 | 54.2 | 1011.25 | 1:00 | 1 |
2023-09-26T23:00:09Z | 98627 | 18.6 | 54.7 | 1011.03 | 2:00 | 2 |
2023-09-27T00:00:01Z | 98835 | 18.6 | 54 | 1010.76 | 3:00 | 3 |
2023-09-27T01:00:05Z | 99040 | 18.3 | 53.7 | 1010.46 | 4:00 | 4 |
2023-09-27T02:00:11Z | 99248 | 18 | 52.9 | 1010.2 | 5:00 | 5 |
2023-09-27T03:00:01Z | 99462 | 17.9 | 53.5 | 1010.18 | 6:00 | 6 |
2023-09-27T04:00:02Z | 99673 | 17.8 | 54.2 | 1010.23 | 7:00 | 7 |
2023-09-27T04:41:40Z | 99822 | 18.3 | 53.2 | 1010.42 | 7:41 | 7.68 |
Date | Hour | Tin [°C] | Tin [K] | Tout [°C] | Global Horizontal Radiation [Wh/m2] | Water Vapor Saturation Pressure [Pa] |
---|---|---|---|---|---|---|
12 July 2022 | 12 | 45.77 | 318.92 | 28 | 205.22 | 3781 |
13 | 40.30 | 313.45 | 26 | 175.50 | 3362 | |
14 | 43.50 | 316.65 | 27.9 | 184.92 | 3759 | |
15 | 43.54 | 316.69 | 28.2 | 181.93 | 3826 | |
16 | 40.71 | 313.86 | 29 | 146.43 | 4007 | |
17 | 35.65 | 308.80 | 28.6 | 103.53 | 3916 | |
18 | 29.08 | 302.23 | 27.3 | 57.00 | 3630 | |
19 | 23.91 | 297.06 | 26 | 23.65 | 3362 | |
20 | 20.48 | 293.63 | 25 | 3.06 | 3167 | |
21 | 16.68 | 289.83 | 22 | 0.00 | 2664 | |
22 | 20.14 | 293.29 | 25 | 0.00 | 3167 | |
23 | 14.16 | 287.31 | 19.8 | 0.00 | 2310 | |
24 | 12.15 | 285.30 | 18 | 0.00 | 2064 | |
3 July 2023 | 15 | 51.52 | 324.67 | 35 | 179.14 | 5627 |
16 | 48.09 | 321.24 | 34.9 | 147.59 | 5596 | |
18 | 32.36 | 305.51 | 34.9 | 0.00 | 5596 | |
19 | 34.04 | 307.19 | 34 | 26.41 | 5322 | |
20 | 30.33 | 303.48 | 33 | 3.87 | 5033 | |
4 July 2023 | 7 | 15.78 | 288.93 | 19 | 22.70 | 2197 |
8 | 20.46 | 293.61 | 19.4 | 61.13 | 2253 | |
9 | 29.34 | 302.49 | 23 | 105.43 | 2810 | |
15 | 50.28 | 323.43 | 34 | 179.30 | 5323 | |
16 | 48.19 | 321.34 | 35 | 147.39 | 5627 | |
17 | 44.26 | 317.41 | 35.1 | 108.87 | 5658 | |
18 | 38.81 | 311.96 | 35 | 58.84 | 5627 | |
19 | 30.35 | 303.50 | 33 | 4.07 | 5033 | |
20 | 28.82 | 301.97 | 31.8 | 3.87 | 4704 | |
21 | 26.03 | 299.18 | 29.9 | 0.00 | 4221 | |
5 July 2023 | 17 | 25.83 | 298.98 | 21.6 | 87.70 | 2580 |
18 | 21.25 | 294.40 | 21 | 51.95 | 2487 | |
19 | 18.25 | 291.40 | 21 | 24.71 | 2487 | |
16 August 2023 | 14 | 46.09 | 319.24 | 31 | 174.48 | 4495 |
15 | 46.77 | 319.92 | 32 | 169.43 | 4758 | |
16 | 44.79 | 317.94 | 33 | 139.00 | 5033 | |
17 | 39.45 | 312.60 | 33 | 88.73 | 5033 | |
18 | 33.81 | 306.96 | 33 | 36.07 | 5033 | |
19 | 29.64 | 302.79 | 32 | 9.13 | 4758 | |
20 | 26.19 | 299.34 | 30 | 0.37 | 4245 | |
21 | 22.51 | 295.66 | 27 | 0.00 | 3567 | |
22 | 21.32 | 294.47 | 26 | 0.00 | 3362 | |
23 | 18.97 | 292.12 | 24 | 0.00 | 2984 | |
17 August 2023 | 0 | 17.81 | 290.96 | 23 | 0.00 | 2810 |
1 | 17.81 | 290.96 | 23 | 0.00 | 2810 | |
2 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
3 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
4 | 15.52 | 288.67 | 21 | 0.00 | 2487 | |
5 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
6 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
7 | 16.78 | 289.93 | 22 | 1.10 | 2644 | |
8 | 20.55 | 293.70 | 24 | 14.36 | 2984 | |
9 | 26.03 | 299.18 | 26 | 43.10 | 3362 | |
16 | 44.72 | 317.87 | 33 | 138.33 | 5033 | |
17 | 37.81 | 310.96 | 32 | 85.01 | 4758 | |
18 | 31.21 | 304.36 | 31 | 35.21 | 4495 | |
26 September 2023 | 7.5 | 13.48 | 286.63 | 19 | 1.90 | 2197 |
8 | 16.96 | 290.11 | 20 | 23.22 | 2338 | |
9 | 23.53 | 296.68 | 21 | 72.81 | 2487 | |
10 | 31.52 | 304.67 | 24 | 115.04 | 2984 | |
11 | 35.96 | 309.11 | 25 | 145.61 | 3169 | |
12 | 39.38 | 312.53 | 28 | 145.03 | 3781 | |
13 | 35.43 | 308.58 | 28 | 108.15 | 3781 | |
14 | 35.10 | 308.25 | 29 | 93.97 | 4007 | |
15 | 33.57 | 306.72 | 29 | 79.76 | 4007 | |
16 | 29.79 | 302.94 | 29 | 44.76 | 4007 | |
17 | 26.93 | 300.08 | 29 | 18.39 | 4007 | |
18 | 23.98 | 297.13 | 28 | 2.48 | 3781 | |
19 | 21.32 | 294.47 | 26 | 0.00 | 3362 | |
27 September 2023 | 7.5 | 13.53 | 286.68 | 19 | 2.35 | 2197 |
8 | 15.77 | 288.92 | 19 | 22.59 | 2197 | |
9 | 23.56 | 296.71 | 21 | 73.11 | 2487 | |
10 | 32.07 | 305.22 | 24 | 120.12 | 2984 | |
11 | 38.49 | 311.64 | 26 | 158.51 | 3362 | |
12 | 40.53 | 313.68 | 27 | 166.76 | 3567 | |
13 | 38.32 | 311.47 | 27 | 146.11 | 3567 | |
14 | 39.40 | 312.55 | 28 | 145.18 | 3781 | |
15 | 38.22 | 311.37 | 28 | 134.15 | 3781 | |
16 | 33.37 | 306.52 | 28 | 88.98 | 3781 | |
17 | 27.11 | 300.26 | 27 | 42.16 | 3567 | |
18 | 23.11 | 296.26 | 27 | 5.49 | 3567 | |
19 | 20.14 | 293.29 | 25 | 0.00 | 3169 |
Date | Hour | Tin [°C] | Tin [K] | Tout [°C] | Global Horizontal Radiation [Wh/m2] | Water Vapor Saturation Pressure [Pa] |
---|---|---|---|---|---|---|
3 July 2023 | 15 | 42.53 | 315.68 | 31 | 140.92 | 4495 |
16 | 39.58 | 312.73 | 30 | 124.54 | 4245 | |
18 | 24.60 | 297.75 | 28 | 0.00 | 4758 | |
19 | 28.97 | 302.12 | 29 | 37.11 | 4007 | |
20 | 27.72 | 300.87 | 29 | 25.68 | 4007 | |
4 July 2023 | 7 | 16.15 | 289.30 | 18 | 36.06 | 2064 |
8 | 21.05 | 294.20 | 19 | 70.49 | 2197 | |
9 | 26.38 | 299.53 | 21 | 98.95 | 2487 | |
15 | 39.47 | 312.62 | 27 | 156.82 | 3567 | |
16 | 36.49 | 309.64 | 27 | 128.97 | 3567 | |
17 | 33.86 | 307.01 | 27 | 104.50 | 3567 | |
18 | 30.15 | 303.30 | 27 | 70.17 | 3567 | |
19 | 23.28 | 296.43 | 27 | 7.00 | 3567 | |
20 | 22.67 | 295.82 | 25 | 23.03 | 3168 | |
21 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
5 July 2023 | 17 | 32.96 | 306.11 | 34 | 38.99 | 5323 |
18 | 35.08 | 308.23 | 35 | 24.04 | 5627 | |
19 | 31.61 | 304.76 | 33 | 15.69 | 5033 | |
16 August 2023 | 14 | 42.56 | 315.71 | 31 | 141.20 | 4495 |
15 | 43.80 | 316.95 | 32 | 141.31 | 4758 | |
16 | 43.80 | 316.95 | 33 | 139.29 | 5033 | |
17 | 40.52 | 313.67 | 33 | 98.71 | 5033 | |
18 | 35.26 | 308.41 | 33 | 49.57 | 5033 | |
19 | 31.76 | 304.91 | 32 | 28.80 | 4758 | |
20 | 26.45 | 299.60 | 30 | 2.74 | 4245 | |
21 | 22.51 | 295.66 | 27 | 0.00 | 3567 | |
22 | 21.32 | 294.47 | 26 | 0.00 | 3362 | |
23 | 18.97 | 292.12 | 24 | 0.00 | 2984 | |
17 August 2023 | 0 | 17.81 | 290.96 | 23 | 0.00 | 2810 |
1 | 17.81 | 290.96 | 23 | 0.00 | 2810 | |
2 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
3 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
4 | 15.52 | 288.67 | 21 | 0.00 | 2487 | |
5 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
6 | 16.66 | 289.81 | 22 | 0.00 | 2644 | |
7 | 17.96 | 291.11 | 22 | 11.73 | 2644 | |
8 | 23.48 | 296.63 | 24 | 41.09 | 2984 | |
9 | 28.67 | 301.82 | 26 | 67.34 | 3362 | |
16 | 46.94 | 320.09 | 33 | 159.38 | 5033 | |
17 | 40.65 | 313.80 | 32 | 111.69 | 4758 | |
18 | 34.23 | 307.38 | 31 | 63.21 | 4495 | |
26 September 2023 | 7.5 | 13.26 | 286.41 | 19 | 0.00 | 2197 |
8 | 16.49 | 289.64 | 20 | 18.98 | 2338 | |
9 | 22.71 | 295.86 | 21 | 65.28 | 2487 | |
10 | 30.92 | 304.07 | 24 | 109.49 | 2984 | |
11 | 36.04 | 309.19 | 25 | 146.42 | 3168 | |
12 | 40.84 | 313.99 | 28 | 158.73 | 3781 | |
13 | 39.18 | 312.33 | 28 | 143.20 | 3781 | |
14 | 41.14 | 314.29 | 29 | 150.43 | 4007 | |
15 | 41.15 | 314.30 | 29 | 150.51 | 4007 | |
16 | 31.29 | 304.44 | 29 | 58.60 | 4007 | |
17 | 33.03 | 306.18 | 29 | 74.67 | 4007 | |
18 | 26.78 | 299.93 | 28 | 28.08 | 3781 | |
19 | 21.32 | 294.47 | 26 | 0.00 | 3362 | |
27 September 2023 | 7.5 | 13.26 | 286.41 | 19 | 0.00 | 2197 |
8 | 15.32 | 288.47 | 19 | 18.52 | 2197 | |
9 | 22.60 | 295.75 | 21 | 64.28 | 2487 | |
10 | 29.64 | 302.79 | 24 | 97.72 | 2984 | |
11 | 26.07 | 299.22 | 26 | 43.46 | 3362 | |
12 | 27.25 | 300.40 | 27 | 43.43 | 3567 | |
13 | 26.47 | 299.62 | 27 | 36.25 | 3567 | |
14 | 28.14 | 301.29 | 28 | 40.63 | 3781 | |
15 | 28.19 | 301.34 | 28 | 41.08 | 3781 | |
16 | 27.05 | 300.20 | 28 | 30.61 | 3781 | |
17 | 24.71 | 297.86 | 27 | 20.09 | 3567 | |
18 | 23.27 | 296.42 | 27 | 6.90 | 3567 | |
19 | 20.14 | 293.29 | 25 | 0.00 | 3168 |
References
- Hollingsworth, J.A.; Ravishankar, E.; O’Connor, B.; Johnson, J.X.; DeCarolis, J.F. Environmental and economic impacts of solar-powered integrated greenhouses. J. Ind. Ecol. 2020, 24, 234–247. [Google Scholar] [CrossRef]
- Smart Greenhouse Market. Available online: https://www.vantagemarketresearch.com/industry-report/smart-greenhouse-market-1592 (accessed on 30 June 2023).
- Gruda, N.; Tanny, J. Protected crops—Recent advances, innovative technologies and future challenges. Acta Hortic. 2015, 1107, 271–278. [Google Scholar] [CrossRef]
- Chiapale, J.P.; Kittas, C. Estimation regionale des besoins de chauffage des serres. Acta Hortic. 1981, 115, 493–503. [Google Scholar] [CrossRef]
- Sethi, V.P.; Sumathy, K.; Lee, C.; Pal, D.S. Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies. Sol. Energy 2013, 96, 56–82. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K. A quasi-steady state model for predicting the heating requirements of conventional greenhouses in cold regions Information. Process. Agric. 2018, 5, 33–46. [Google Scholar]
- Nguyen-Xuan, S.; Nhat, N.L. A dynamic model for temperature prediction in glass greenhouse. In Proceedings of the 2019 6th National Foundation for Science and Technology Development (NAFOSTED) Conference on Information and Computer Science (NICS), Hanoi, Vietnam, 12–13 December 2019; pp. 274–278. [Google Scholar]
- Mashonjowa, E.; Ronsse, F.; Milford, J.R.; Pieters, J.G. Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model. Sol. Energy 2013, 91, 381–393. [Google Scholar] [CrossRef]
- Youssef, A.; Dekock, J.; Ozcan, S.E.; Berckmans, D.; Katsoulas, N.; Kittas, C. Data-Based Approach to Model the Dynamic Behaviour of Greenhouse Temperature; International Symposium on High Technology for Greenhouse Systems (GreenSys): Quebec City, QC, Canada, 2011. [Google Scholar]
- Vadiee, A.; Martin, V. Energy analysis and thermoeconomic assessment of the closed greenhouse—The largest commercial solar building. Appl. Energy 2013, 102, 1256–1266. [Google Scholar] [CrossRef]
- Stanciu, C.; Stanciu, D.; Dobrovicescu, A. Effect of greenhouse orientation with respect to E-W axis on its required heating and cooling loads. Energy Procedia 2016, 85, 498–504. [Google Scholar] [CrossRef]
- Rabiu, A.; Na, W.H.; Akpenpuun, T.D.; Rasheed, A.; Adesanya, M.A.; Ogunlowo, O.O.; Kim, H.T.; Lee, H.W. Determination of overall heat transfer coefficient for greenhouse energy-saving screen using Trnsys and hotbox. Biosyst. Eng. 2022, 217, 83–101. [Google Scholar] [CrossRef]
- Iga, J.L.; Iga, J.L.; Iga, C.L.; Flores, R.A. Effect of air density variations on greenhouse temperature model. Math. Comput. Model. 2008, 47, 855–867. [Google Scholar]
- Xu, K.; Guo, X.; He, J.; Yu, B.; Tan, J.; Guo, Y. A study on temperature spatial distribution of a greenhouse under solar load with considering crop transpiration and optical effects. Energy Convers. Manag. 2022, 254, 115277. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Ruano, A.E. Choice of RBF structure for predicting greenhouse inside air temperature. IFAC Proc. Vol. 2002, 35, 91–96. [Google Scholar] [CrossRef]
- Kang, Y.; Outlaw, W.; Fiore, G.; Riddle, K.A. Guard cell apoplastic photosynthate accumulation corresponds to a phloem-loading mechanism. J. Exp. Bot. 2007, 58, 4061–4070. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation management of European greenhouse vegetable crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Azaizia, Z.; Kooli, S.; Hamdi, I.; Elkhal, W.; Guizani, A. A 2020 Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper. Renew. Energy 2020, 145, 1972–1984. [Google Scholar] [CrossRef]
- Roy, J.C.; Boulard, T.; Kittas, C.; Wang, S. Convective and Ventilation Transfers in Greenhouses, Part 1: The Greenhouse considered as a Perfectly Stirred Tank. Biosyst. Eng. 2002, 83, 1–20. [Google Scholar] [CrossRef]
- Papadakis, G.; Mermier, M.; Meneses, J.F.; Boulard, T. Measurement and analysis of air exchange rates in a greenhouse with continuous roof and side openings. J. Agric. Eng. Res. 1996, 63, 219–228. [Google Scholar] [CrossRef]
- Miguel, A.F.; Van de Braak, N.J.; Silva, A.M.; Bot, G.P.A. Free convection heat transfer in screened greenhouse. J. Agric. Eng. Res. 1998, 69, 133–139. [Google Scholar] [CrossRef]
- Lamrani, M.A.; Boulard, T.; Roy, J.C.; Jaffrin, A. Airflows and temperature patterns induced in a confined greenhouse. J. Agric. Eng. Res. 2001, 78, 75–88. [Google Scholar] [CrossRef]
- Li, S.; Willits, D.H. Modeling Thermal Stratification in Fan-Ventilated Greenhouses. Trans. Asabe 2008, 51, 1735–1746. [Google Scholar] [CrossRef]
- Cygas, D.; Vaiskunaite, R. Efficiency of Natural Ventilation in Central Greenhouse of Botanical Garden in Kosice. In Proceedings of the 10th International Conference Environmental Engineering (10th ICEE), Vilnius, Lithuania, 27–28 April 2017. [Google Scholar]
- Baglivo, C.; Mazzeo, D.; Panico, S.; Bonuso, S.; Matera, N.; Congedo, P.M.; Oliveti, G. Complete greenhouse dynamic simulation tool to assess the crop thermal well-being and energy needs. Appl. Therm. Eng. 2020, 179, 115698. [Google Scholar] [CrossRef]
- Xia, T.; Li, Y.; Sun, Z.; Wan, X.; Sun, D.; Wang, L.; Liu, X.; Li, T. Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions. Appl. Energy 2023, 332, 120548. [Google Scholar] [CrossRef]
- Gorjian, S.; Ebadi, H.; Najafi, G.; Chandel, S.S. Recent advances in net-zero energy greenhouses and adapted thermal energy storage systems. Sustain. Energy Technol. Assess. 2021, 43, 100940. [Google Scholar] [CrossRef]
- Nasrollahi, H.; Ahmadi, F.; Ebadollahi, M.; Nobar, S.N.; Amidpour, N. The greenhouse technology in different climate conditions: A comprehensive energy-saving analysis. Sustain. Energy Technol. Assess. 2021, 47, 101455. [Google Scholar] [CrossRef]
- Parajuli, S.; Bhattarai, T.N.; Gorjian, S.; Vithanage, M.; Paudel, S.R. Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal. Appl. Energy 2023, 344, 121270. [Google Scholar] [CrossRef]
- Barrutieta, X.; Kolbasnikova, A.; Irulegi, O.; Hernández, R. Energy balance and photovoltaic integration in positive energy buildings. Design and performance in built office case studies. Archit. Sci. Rev. 2023, 66, 26–41. [Google Scholar] [CrossRef]
- Fernández, E.F.; Villar-Fernández, A.; Montes-Romero, J.; Ruiz-Torres, L.; Rodrigo, P.M.; Manzaneda, A.J.; Almonacid, F. Global energy assessment of the potential of photovoltaics for greenhouse farming. Appl. Energy 2022, 309, 118474. [Google Scholar] [CrossRef]
- ThingSpeak. IoT Analytics Platform. Available online: https://thingspeak.com/ (accessed on 10 November 2023).
- Udrea, I.; Alionte, C.G.; Gheorghe, V.I.; Apostolescu, T.C.; Cobzac, C.I. New Trends in the Management of Optometry. In Innovations in Industrial Engineering II; Springer: Cham, Switzerland, 2022; pp. 100–113. [Google Scholar] [CrossRef]
- Adafruit. DHT22, Temperature-Humidity Sensor. Available online: https://www.adafruit.com/product/385 (accessed on 10 November 2023).
- Adafruit. BMP180, Barometric Pressure/Temperature/Altitude Sensor. Available online: https://www.adafruit.com/product/1603 (accessed on 10 November 2023).
- Raspberry Pi. Raspberry Pi4, Desktop Computer. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (accessed on 10 November 2023).
- Udrea, I.; Gheorghe, V.I.; Cartal, L.A.; Duminica, D.; Petrache, S.; Apostolecu, T.C.; Kraus, V.F. IoT solution for monitoring indoor climate parameters in open space offices. E3S Web Conf. 2020, 180, 02012. [Google Scholar] [CrossRef]
- Kennesaw State University. Lecture Note, Greenhouse Steady State Energy Balance and Mass Balance Models. Available online: http://ecoursesonline.iasri.res.in/mod/page/view.php?id=1635 (accessed on 10 November 2023).
- Garsia, A.M.; Huld, T. Performance Comparison of Different Models for the Estimation of Global Irradiance on Inclined Surfaces. Validation of the Model Implemented in PVGIS; Report EUR 26075 EN; European Commission, Joint Research Centre, Institute for Energy and Transport: Ispra, Italy, 2013; ISBN 978-92-79-32507-6. [Google Scholar]
- Popa, R.T. Research about The Energy Efficiency of Building Glazings with Attachments, in the Conditions of Our Country. Universitatea POLITEHNICA din Bucureşti. Școala Doctorală a Facultății de Inginerie Mecanică si Mecatronică. 2018. Available online: https://rei.gov.ro/teza-doctorat-document/806765e6a2e1b6682f-22-TEZA-DE-DOCTORAT-SI-ANEXE-FORMAT-PDF-EXCLUS-SCAN.pdf (accessed on 30 November 2023).
- NOAA Solar Calculator. U.S. Department of Commerce, Global Monitoring Laboratory, National Oceanic & Atmospheric Administration, Earth System Research Laboratories. Available online: https://gml.noaa.gov/grad/solcalc/ (accessed on 12 November 2023).
- Window Software. Lawrence Berkeley National Laboratory, Energy Technologies Area, Berkley Lab. Version 7.8.71, Released: 17 August 2023. Available online: https://windows.lbl.gov/window-software-downloads (accessed on 12 November 2023).
- Erbs, D.G.; Klein, S.A.; Duffie, J.A. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol. Energy 1982, 28, 293–302. [Google Scholar] [CrossRef]
- SOLPOS Calculator. Solar Position and Intensity. NREL Transforming Energy. Available online: https://midcdmz.nrel.gov/solpos/solpos.html (accessed on 12 November 2023).
- Udrea, I.; Popa, R.T.; Mladin, E.C.; Georgescu, M.S.; Ochinciuc, C.V. Thermal bridges evaluation for a Passive House building in Romanian Southern climate. In Proceedings of the 2017 International Conference on Energy and Environment (CIEM), Bucharest, Romania, 19–20 October 2017; pp. 456–459. [Google Scholar]
- THERM Software (Version 7.7.10.0, 2019). Berkeley Lab—Windows & Daylighting, Building Technology & Urban Systems. Available online: https://windows.lbl.gov/therm-software-downloads (accessed on 10 November 2023).
- Passive House Blower Door Testing. Available online: https://efficiencymatrix.com/passive-house-blower-door-testing/ (accessed on 4 July 2023).
- NP048-2000. Standard for the Thermal and Energetic Expertise of the Existing Buildings and Their Heating and Dwelling Hot Water Systems. Buletinul Constructiilor. 2001, Volume 4. Available online: http://www.algorithm.ro/wp-content/uploads/2017/03/NP-048-2000.pdf (accessed on 30 November 2023).
- EnergyPlus. International Weather for Energy Calculations, Weather Data by Location: Europe (WMO Region 6)—Romania. Available online: https://energyplus.net/weather-location/europe_wmo_region_6/ROU//ROU_Bucharest.154200_IWEC (accessed on 10 November 2023).
- CALOREX Calculator. Available online: https://www.calorex.ro/tehnic/tehnic_34.shtml (accessed on 10 November 2023).
- MatLAB. Programming and Numeric Computing Platform. Available online: https://uk.mathworks.com/products/matlab.html (accessed on 21 February 2024).
- Tutiempo. World Weather and Local Weather Forecast. Available online: https://en.tutiempo.net/ (accessed on 10 November 2023).
- PYR Sensor, Easy-to_Use Pyranometer, METER GROUP. Available online: https://www.metergroup.com/en/meter-environment/products/pyr-sensor-pyranometer (accessed on 10 November 2023).
- Badescu, V.; Dumitrescu, A. Simple models to compute solar global irradiance from the CMSAF product Cloud Fractional Coverage. Renew. Energy 2014, 66, 118–131. [Google Scholar] [CrossRef]
- Campen, J.B.; Bot, G.P.A.; de Zwart, H.F. Dehumidification of Greenhouses at Northern Latitudes. Biosyst. Eng. 2003, 86, 487–493. [Google Scholar] [CrossRef]
- Li, Y.; Sun, F.; Shi, W.; Liu, X.; Li, T. Numerical Simulation of Ventilation Performance in Mushroom Solar Greenhouse Design. Energies 2022, 15, 5899. [Google Scholar] [CrossRef]
- Ma, D.; Carpenter, N.; Maki, H.; Rehman, T.U.; Tuinstra, M.R. Greenhouse environment modeling and simulation for microclimate control. Comput. Electron. Agric. 2019, 162, 134–142. [Google Scholar] [CrossRef]
- Molina-Aiz, F.D.; Valera, D.L.; Alvarez, A.J. Measurement and simulation of climate inside Almeria-type greenhouses using computational fluid dynamics. Agric. For. Meteorol. 2004, 125, 33–51. [Google Scholar] [CrossRef]
Area [m2] | β [Degree] | γ [Degree] | β [Rad] | γ [Rad] | ||
---|---|---|---|---|---|---|
North wall, nw | nw | 0.30 | 90 | 180.00 | 1.57 | 3.14 |
North roof, nr | nr | 0.15 | 24 | 180.00 | 0.42 | 3.14 |
East wall, ew | ew | 0.25 | 90 | 90.00 | 1.57 | 1.57 |
South wall, sw | sw | 0.30 | 90 | 0.00 | 1.57 | 0.00 |
South roof, sr | sr | 0.15 | 24 | 0.00 | 0.42 | 0.00 |
West wall, ww | ww | 0.25 | 90 | 270.00 | 1.57 | 4.71 |
Angle | Tvis: | Rfvis: | Rbvis: | τ | Rfsol: | Rbsol: | Abs1: | SHGCc: |
---|---|---|---|---|---|---|---|---|
0 | 0.923 | 0.074 | 0.074 | 0.849 | 0.069 | 0.069 | 0.082 | 0.875 |
10 | 0.923 | 0.074 | 0.074 | 0.849 | 0.069 | 0.069 | 0.082 | 0.874 |
20 | 0.922 | 0.074 | 0.074 | 0.848 | 0.069 | 0.069 | 0.083 | 0.874 |
30 | 0.92 | 0.076 | 0.076 | 0.845 | 0.071 | 0.071 | 0.084 | 0.871 |
40 | 0.914 | 0.082 | 0.082 | 0.838 | 0.077 | 0.077 | 0.085 | 0.864 |
50 | 0.895 | 0.1 | 0.1 | 0.819 | 0.095 | 0.095 | 0.086 | 0.846 |
60 | 0.847 | 0.148 | 0.148 | 0.773 | 0.14 | 0.14 | 0.086 | 0.8 |
70 | 0.728 | 0.268 | 0.268 | 0.663 | 0.255 | 0.255 | 0.082 | 0.688 |
80 | 0.457 | 0.538 | 0.538 | 0.414 | 0.519 | 0.519 | 0.068 | 0.435 |
90 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
Hemis | 0.846 | 0.14 | 0.14 | 0.774 | 0.133 | 0.133 | 0.083 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udrea, I.; Gheorghe, V.I.; Dogeanu, A.M. Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach. Sensors 2024, 24, 2261. https://doi.org/10.3390/s24072261
Udrea I, Gheorghe VI, Dogeanu AM. Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach. Sensors. 2024; 24(7):2261. https://doi.org/10.3390/s24072261
Chicago/Turabian StyleUdrea, Ioana, Viorel Ionut Gheorghe, and Angel Madalin Dogeanu. 2024. "Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach" Sensors 24, no. 7: 2261. https://doi.org/10.3390/s24072261
APA StyleUdrea, I., Gheorghe, V. I., & Dogeanu, A. M. (2024). Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach. Sensors, 24(7), 2261. https://doi.org/10.3390/s24072261