Measurement of Sedentary Behavior—The Outcomes of the Angle for Posture Estimation (APE) Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer–Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J. Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef]
- Pinto, A.J.; Bergouignan, A.; Dempsey, P.C.; Roschel, H.; Owen, N.; Gualano, B.; Dunstan, D.W. Physiology of sedentary behavior. Physiol. Rev. 2023, 103, 2561–2622. [Google Scholar] [CrossRef]
- Chandrasekaran, B.; Pesola, A.J.; Rao, C.R.; Arumugam, A. Does breaking up prolonged sitting improve cognitive functions in sedentary adults? A mapping review and hypothesis formulation on the potential physiological mechanisms. BMC Musculoskelet. Disord. 2021, 22, 274. [Google Scholar] [CrossRef]
- Silva, F.M.; Duarte-Mendes, P.; Rusenhack, M.C.; Furmann, M.; Nobre, P.R.; Fachada, M.; Soares, C.M.; Teixeira, A.; Ferreira, J.P. Objectively measured sedentary behavior and physical fitness in adults: A systematic review and meta–analysis. Int. J. Environ. Res. Public Health 2020, 17, 8660. [Google Scholar] [CrossRef]
- Vaara, J.P.; Vasankari, T.; Wyss, T.; Pihlainen, K.; Ojanen, T.; Raitanen, J.; Vähä-Ypyä, H.; Kyröläinen, H. Device–based measures of sedentary time and physical activity are associated with physical fitness and body fat content. Front. Sports Act. Living 2020, 2, 587789. [Google Scholar] [CrossRef]
- Ekelund, U.; Brown, W.J.; Steene-Johannessen, J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.E.; Lee, I.-M. Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta–analysis of data from 850,060 participants. Br. J. Sports Med. 2019, 53, 886–894. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Powell, K.E.; Jakicic, J.M.; Troiano, R.P.; Piercy, K.; Tennant, B.; 2018 Physical Activity Guidelines Advisory Committee. Sedentary behavior and health: Update from the 2018 physical activity guidelines advisory committee. Med. Sci. Sports Exerc. 2019, 51, 1227. [Google Scholar] [CrossRef]
- Saunders, T.J.; McIsaac, T.; Douillette, K.; Gaulton, N.; Hunter, S.; Rhodes, R.E.; Prince, S.A.; Carson, V.; Chaput, J.-P.; Chastin, S.; et al. Sedentary behaviour and health in adults: An overview of systematic reviews. Appl. Physiol. Nutr. Metab. 2020, 45, S197–S217. [Google Scholar] [CrossRef]
- Meh, K.; Sember, V.; Sorić, M.; Vähä–Ypyä, H.; Rocha, P.; Jurak, G. The dilemma of physical activity questionnaires: Fitter people are less prone to over reporting. PLoS ONE 2023, 18, e0285357. [Google Scholar] [CrossRef]
- Prince, S.A.; Cardilli, L.; Reed, J.L.; Saunders, T.J.; Kite, C.; Douillette, K.; Fournier, K.; Buckley, J.P. A comparison of self–reported and device measured sedentary behaviour in adults: A systematic review and meta–analysis. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 31. [Google Scholar] [CrossRef]
- Kongsvold, A.; Flaaten, M.; Logacjov, A.; Skarpsno, E.S.; Bach, K.; Nilsen TI, L.; Mork, P.J. Can the bias of self–reported sitting time be corrected? A statistical model validation study based on data from 23 993 adults in the Norwegian HUNT study. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 139. [Google Scholar] [CrossRef]
- Boerema, S.T.; van Velsen, L.; Vollenbroek, M.M.; Hermens, H.J. Pattern measures of sedentary behaviour in adults: A literature review. Digit. Health 2020, 6, 2055207620905418. [Google Scholar] [CrossRef]
- O’Brien, M.W.; Daley, W.S.; Schwartz, B.D.; Shivgulam, M.E.; Wu, Y.; Kimmerly, D.S.; Frayne, R.J. Characterization of detailed sedentary postures using a tri-monitor activpal configuration in free-living conditions. Sensors 2023, 23, 587. [Google Scholar] [CrossRef]
- Hettiarachchi, P.; Aili, K.; Holtermann, A.; Stamatakis, E.; Svartengren, M.; Palm, P. Validity of a non–proprietary algorithm for identifying lying down using raw data from thigh–worn triaxial accelerometers. Sensors 2021, 21, 904. [Google Scholar] [CrossRef]
- Gibbs, B.B.; Hergenroeder, A.L.; Katzmarzyk, P.T.; Lee, I.M.; Jakicic, J.M. Definition, measurement, and health risks associated with sedentary behavior. Med. Sci. Sports Exerc. 2015, 47, 1295. [Google Scholar] [CrossRef]
- Chastin, S.; McGregor, D.; Palarea–Albaladejo, J.; Diaz, K.M.; Hagströmer, M.; Hallal, P.C.; van Hees, V.T.; Hooker, S.; Howard, V.J.; Lee, I.-M.; et al. Joint association between accelerometry–measured daily combination of time spent in physical activity, sedentary behaviour and sleep and all–cause mortality: A pooled analysis of six prospective cohorts using compositional analysis. Br. J. Sports Med. 2021, 55, 1277–1285. [Google Scholar] [CrossRef]
- Edwardson, C.L.; Rowlands, A.V.; Bunnewell, S.; Sanders, J.; Esliger, D.W.; Gorely, T.; O’connell, S.; Davies, M.J.; Khunti, K.; Yates, T. Accuracy of Posture Allocation Algorithms for Thigh-and Waist-Worn Accelerometers. Med. Sci. Sports Exerc. 2016, 48, 1085–1090. [Google Scholar] [CrossRef]
- Kalisch, T.; Theil, C.; Gosheger, G.; Ackmann, T.; Schoenhals, I.; Moellenbeck, B. Measuring sedentary behavior using waist-and thigh-worn accelerometers and inclinometers—Are the results comparable? Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221079256. [Google Scholar] [CrossRef]
- Júdice, P.B.; Teixeira, L.; Silva, A.M.; Sardinha, L.B. Accuracy of Actigraph inclinometer to classify free-living postures and motion in adults with overweight and obesity. J. Sports Sci. 2019, 37, 1708–1716. [Google Scholar] [CrossRef]
- Vähä-Ypyä, H.; Husu, P.; Suni, J.; Vasankari, T.; Sievänen, H. Reliable recognition of lying, sitting, and standing with a hip-worn accelerometer. Scand. J. Med. Sci. Sports 2018, 28, 1092–1102. [Google Scholar] [CrossRef]
- Greenwood-Hickman, M.A.; Nakandala, S.; Jankowska, M.M.; Rosenberg, D.E.; Tuz-Zahra, F.; Bellettiere, J.; Carlson, J.; Hibbing, P.R.; Zou, J.; Lacroix, A.Z.; et al. The CNN Hip Accelerometer Posture (CHAP) method for classifying sitting patterns from hip accelerometers: A validation study. Med. Sci. Sports Exerc. 2021, 53, 2445. [Google Scholar] [CrossRef]
- Bellettiere, J.; Nakandala, S.; Tuz-Zahra, F.; Winkler, E.A.; Hibbing, P.R.; Healy, G.N.; Dunstan, D.W.; Owen, N.; Greenwood-Hickman, M.A.; Rosenberg, D.E.; et al. CHAP–Adult: A Reliable and Valid Algorithm to Classify Sitting and Measure Sitting Patterns Using Data From Hip–Worn Accelerometers in Adults Aged 35+. J. Meas. Phys. Behav. 2022, 5, 215–223. [Google Scholar] [CrossRef]
- Farrahi, V.; Kangas, M.; Walmsley, R.; Niemelä, M.; Kiviniemi, A.; Puukka, K.; Collings, P.J.; Korpelainen, R.; Jämsä, T. Compositional associations of sleep and activities within the 24-h cycle with cardiometabolic health markers in adults. Med. Sci. Sports Exerc. 2021, 53, 324. [Google Scholar] [CrossRef]
- Hibbing, P.R.; Carlson, J.A.; Steel, C.; Greenwood-Hickman, M.A.; Nakandala, S.; Jankowska, M.M.; Bellettiere, J.; Zou, J.; LaCroix, A.Z.; Kumar, A.; et al. Low movement, deep-learned sitting patterns, and sedentary behavior in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Int. J. Obes. 2023, 47, 1100–1107. [Google Scholar] [CrossRef]
- Husu, P.; Tokola, K.; Vähä-Ypyä, H.; Sievänen, H.; Suni, J.; Heinonen, O.J.; Heiskanen, J.; Kaikkonen, K.M.; Savonen, K.; Kokko, S.; et al. Physical activity, sedentary behavior, and time in bed among finnish adults measured 24/7 by triaxial accelerometry. J. Meas. Phys. Behav. 2021, 4, 163–173. [Google Scholar] [CrossRef]
- Husu, P.; Vähä-Ypyä, H.; Tokola, K.; Sievänen, H.; Mänttäri, A.; Kokko, S.; Kaikkonen, K.M.; Savonen, K.; Vasankari, T. Measurement of physical fitness and 24/7 physical activity, standing, sedentary behavior, and time in bed in working-age Finns: Study protocol for FINFIT 2021. Methods Protoc. 2022, 5, 7. [Google Scholar] [CrossRef]
- Mänttäri, A.; Suni, J.; Sievänen, H.; Husu, P.; Vähä-Ypyä, H.; Valkeinen, H.; Tokola, K.; Vasankari, T. Six-minute walk test: A tool for predicting maximal aerobic power (VO2 max) in healthy adults. Clin. Physiol. Funct. Imaging 2018, 38, 1038–1045. [Google Scholar] [CrossRef]
- Caramaliu, R.V.; Vasile, A.; Bacis, I. Wearable vital parameters monitoring system. Advanced Topics in Optoelectronics. Microelectron. Nanotechnol. 2015, 9258, 187–192. [Google Scholar] [CrossRef]
- Jaeschke, L.; Luzak, A.; Steinbrecher, A.; Jeran, S.; Ferland, M.; Linkohr, B.; Schulz, H.; Pischon, T. 24 h-accelerometry in epidemiological studies: Automated detection of non-wear time in comparison to diary information. Sci. Rep. 2017, 7, 2227. [Google Scholar] [CrossRef]
- Vähä-Ypyä, H.; Sievänen, H.; Husu, P.; Tokola, K.; Vasankari, T. Intensity paradox—Low-fit people are physically most active in terms of their fitness. Sensors 2021, 21, 2063. [Google Scholar] [CrossRef]
- Vähä-Ypyä, H.; Bretterhofer, J.; Husu, P.; Windhaber, J.; Vasankari, T.; Titze, S.; Sievänen, H. Performance of Different Accelerometry-Based Metrics to Estimate Oxygen Consumption during Track and Treadmill Locomotion over a Wide Intensity Range. Sensors 2023, 23, 5073. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Donaldson, S.C.; Montoye, A.H.; Imboden, M.T.; Kaminsky, L.A. Variability of objectively measured sedentary behavior. Med. Sci. Sports Exerc. 2016, 48, 755. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Ketels, M.; Rasmussen, C.L.; Korshøj, M.; Gupta, N.; De Bacquer, D.; Holtermann, A.; Clays, E. The relation between domain–specific physical behaviour and cardiorespiratory fitness: A cross–sectional compositional data analysis on the physical activity health paradox using accelerometer–assessed data. Int. J. Environ. Res. Public Health 2020, 17, 7929. [Google Scholar] [CrossRef]
- Kitano, N.; Kai, Y.; Jindo, T.; Fujii, Y.; Tsunoda, K.; Arao, T. Association of domain-specific physical activity and sedentary behavior with cardiometabolic health among office workers. Scand. J. Med. Sci. Sports 2022, 32, 1224–1235. [Google Scholar] [CrossRef]
- Aunger, J.; Wagnild, J. Objective and subjective measurement of sedentary behavior in human adults: A toolkit. Am. J. Hum. Biol. 2022, 34, e23546. [Google Scholar] [CrossRef]
- Raichlen, D.A.; Pontzer, H.; Zderic, T.W.; Harris, J.A.; Mabulla, A.Z.; Hamilton, M.T.; Wood, B.M. Sitting, squatting, and the evolutionary biology of human inactivity. Proc. Natl. Acad. Sci. USA 2020, 117, 7115–7121. [Google Scholar] [CrossRef]
- Norha, J.; Sjöros, T.; Garthwaite, T.; Laine, S.; Saarenhovi, M.; Kallio, P.; Laitinen, K.; Houttu, N.; Vähä-Ypyä, H.; Sievänen, H.; et al. Effects of reducing sedentary behavior on cardiorespiratory fitness in adults with metabolic syndrome: A 6-month RCT. Scand. J. Med. Sci. Sports 2023, 33, 1452–1461. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Knechtle, B. Sedentarism in Recreational Marathon Runners. Open Access J. Sports Med. 2023, 14, 103–109. [Google Scholar] [CrossRef]
- Dempsey, P.C.; Thyfault, J.P. Physiological Responses to Sedentary Behaviour. In Sedentary Behaviour Epidemiology; Leitzmann, M.F., Jochem, C., Schmid, D., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 109–153. [Google Scholar]
- Sjöros, T.; Laine, S.; Garthwaite, T.; Vähä-Ypyä, H.; Löyttyniemi, E.; Koivumäki, M.; Houttu, N.; Laitinen, K.; Kalliokoski, K.K.; Sievänen, H.; et al. Reducing sedentary time and whole-body insulin sensitivity in metabolic syndrome: A 6-month randomized controlled trial. Med. Sci. Sports Exerc. 2023, 55, 342. [Google Scholar] [CrossRef]
- Garthwaite, T.; Sjöros, T.; Laine, S.; Vähä-Ypyä, H.; Löyttyniemi, E.; Sievänen, H.; Houttu, N.; Laitinen, K.; Kalliokoski, K.; Vasankari, T.; et al. Effects of reduced sedentary time on cardiometabolic health in adults with metabolic syndrome: A three–month randomized controlled trial. J. Sci. Med. Sport 2022, 25, 579–585. [Google Scholar] [CrossRef]
- O’Brien, M.W.; Wu, Y.; Petterson, J.L.; Frayne, R.J.; Kimmerly, D.S. Ecological validity of prolonged sitting studies: How well do they represent real–life sedentary patterns? A pilot study. Transl. J. Am. Coll. Sports Med. 2022, 7, e000182. [Google Scholar] [CrossRef]
- Vasankari, V.; Husu, P.; Vähä-Ypyä, H.; Suni, J.H.; Tokola, K.; Borodulin, K.; Wennman, H.; Halonen, J.; Hartikainen, J.; Sievänen, H.; et al. Subjects with cardiovascular disease or high disease risk are more sedentary and less active than their healthy peers. BMJ Open Sport—Exerc. Med. 2018, 4, e000363. [Google Scholar] [CrossRef]
- Husu, P.; Suni, J.; Tokola, K.; Vähä-Ypyä, H.; Valkeinen, H.; Mäki-Opas, T.; Sievänen, H.; Vasankari, T. Frequent sit–to–stand transitions and several short standing periods measured by hip–worn accelerometer are associated with smaller waist circumference among adults. J. Sports Sci. 2019, 37, 1840–1848. [Google Scholar] [CrossRef]
- Sagelv, E.H.; Hopstock, L.A.; Morseth, B.; Hansen, B.H.; Steene-Johannessen, J.; Johansson, J.; Nordström, A.; Saint-Maurice, P.F.; Løvsletten, O.; Wilsgaard, T.; et al. Device-measured physical activity, sedentary time, and risk of all-cause mortality: An individual participant data analysis of four prospective cohort studies. Br. J. Sports Med. 2023, 57, 1457–1463. [Google Scholar] [CrossRef]
- Giurgiu, M.; Bussmann, J.B.; Hill, H.; Anedda, B.; Kronenwett, M.; Koch, E.D.; Ebner-Priemer, U.W.; Reichert, M. Validating accelerometers for the assessment of body position and sedentary behavior. J. Meas. Phys. Behav. 2020, 3, 253–263. [Google Scholar] [CrossRef]
- Blodgett, J.M.; Ahmadi, M.N.; Atkin, A.J.; Chastin, S.; Chan, H.W.; Suorsa, K.; Bakker, E.A.; Hettiarcachchi, P.; Johansson, P.J.; Sherar, L.B.; et al. Device-measured physical activity and cardiometabolic health: The Prospective Physical Activity, Sitting, and Sleep (ProPASS) consortium. Eur. Heart J. 2024, 45, 458–471. [Google Scholar] [CrossRef]
- Straczkiewicz, M.; Huang, E.J.; Onnela, J.P. A “one-size-fits-most” walking recognition method for smartphones, smartwatches, and wearable accelerometers. npj Digit. Med. 2023, 6, 29. [Google Scholar] [CrossRef]
- Neugebauer, J.M.; Collins, K.H.; Hawkins, D.A. Ground reaction force estimates from ActiGraph GT3X+ hip accelerations. PLoS ONE 2014, 9, e99023. [Google Scholar] [CrossRef]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’Flynn, B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: A systematic review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef]
Age Group (Years) | CRF Third | Women | Men | BMI Category | Women | Men |
---|---|---|---|---|---|---|
20–29 | high | 114 | 56 | low | 133 | 41 |
mid | 58 | 14 | mid | 46 | 32 | |
low | 14 | 10 | high | 7 | 7 | |
30–39 | high | 154 | 92 | low | 196 | 84 |
mid | 103 | 90 | mid | 88 | 83 | |
low | 67 | 19 | high | 40 | 34 | |
40–49 | high | 165 | 99 | low | 238 | 100 |
mid | 149 | 108 | mid | 125 | 134 | |
low | 131 | 76 | high | 82 | 49 | |
50–59 | high | 66 | 44 | low | 202 | 93 |
mid | 197 | 143 | mid | 200 | 185 | |
low | 243 | 163 | high | 104 | 72 | |
60–70 | high | 48 | 14 | low | 267 | 150 |
mid | 194 | 125 | mid | 227 | 243 | |
low | 375 | 344 | high | 123 | 90 |
Group | Age (Years) | VO2max (mL/kg/min) | BMI (kg/m2) | ||
---|---|---|---|---|---|
CRF thirds | women | high | 36.1 (11.5, 20–69) | 39.5 (2.4, 36.3–48.6) | 22.0 (2.2, 16.5–32.5) |
mid | 45.2 (13.7, 20–69) | 33.8 (1.4, 31.2–36.3) | 24.6 (2.6, 17.3–39.6) | ||
low | 53.0 (11.9, 20–70) | 26.3 (3.7, 9.9–31.2) | 29.7 (4.4, 19.2–47.3) | ||
men | high | 34.7 (10.4, 20–69) | 44.0 (2.8, 40.4–53.4) | 24.4 (2.8, 16.7–33.3) | |
mid | 45.6 (12.1, 20–69) | 37.4 (1.6, 34.4–40.4) | 26.4 (3.1, 14.9–35.8) | ||
low | 54.4 (12.7, 20–70) | 29.6 (4.0, 12.5–34.4) | 29.0 (4.5, 19.0–48.7) | ||
BMI categories | women | low | 41.8 (14.3, 20–69) | 36.8 (4.0, 19.4–48.6) | 22.2 (1.8, 16.5–25.0) |
mid | 47.2 (14.1, 20–70) | 31.1 (3.9, 18.2–41.8) | 27.1 (1.4, 25.0–30.0) | ||
high | 50.2 (11.6, 26–70) | 24.5 (4.4, 9.9–40.2) | 33.7 (3.2, 30.0–47.3) | ||
men | low | 41.7 (14.5, 20–70) | 40.6 (5.4, 22.9–53.4) | 23.0 (1.6, 14.9–25.0) | |
mid | 46.4 (13.9, 20–70) | 36.3 (5.6, 16.2–51.1) | 27.2 (1.4, 25.0–30.0) | ||
high | 47.9 (13.4, 22–69) | 30.9 (6.5, 12.5–46.9) | 33.2 (3.4, 30.0–48.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vähä-Ypyä, H.; Husu, P.; Sievänen, H.; Vasankari, T. Measurement of Sedentary Behavior—The Outcomes of the Angle for Posture Estimation (APE) Method. Sensors 2024, 24, 2241. https://doi.org/10.3390/s24072241
Vähä-Ypyä H, Husu P, Sievänen H, Vasankari T. Measurement of Sedentary Behavior—The Outcomes of the Angle for Posture Estimation (APE) Method. Sensors. 2024; 24(7):2241. https://doi.org/10.3390/s24072241
Chicago/Turabian StyleVähä-Ypyä, Henri, Pauliina Husu, Harri Sievänen, and Tommi Vasankari. 2024. "Measurement of Sedentary Behavior—The Outcomes of the Angle for Posture Estimation (APE) Method" Sensors 24, no. 7: 2241. https://doi.org/10.3390/s24072241
APA StyleVähä-Ypyä, H., Husu, P., Sievänen, H., & Vasankari, T. (2024). Measurement of Sedentary Behavior—The Outcomes of the Angle for Posture Estimation (APE) Method. Sensors, 24(7), 2241. https://doi.org/10.3390/s24072241