Field Testing of Gamma-Spectroscopy Method for Soil Water Content Estimation in an Agricultural Field
Abstract
:1. Introduction
1.1. Applications Requiring Local Scale Soil Water Content Monitoring
1.2. Existing Soil Water Content Sensors
1.3. Spatial Scale of Soil Water Content Monitoring
1.4. Theoretical Relationship between Detected Gamma Radiation and Soil Water Content
1.5. Additional Factors Affecting Gamma Radiation Estimation of SWC
1.6. Approach
2. Materials and Methods
2.1. Site Description
2.2. Instrumentation
2.3. Gravimetric Water Content Sampling
2.4. Biomass Characterization
2.5. Depth-Weighting of Soil Samples
2.6. Auxiliary Data
2.7. Calibration Equation
2.8. Evaluation of Calibration Equation
2.9. Recommended Sample Sizes for Parameter Calibration
3. Results
3.1. Comparison of Observations with Calibration Equation
3.2. Sample Size Analyses
4. Discussion
4.1. Describing Field Gamma-Ray Behavior
4.2. Method Limitations
4.3. Favorable Characteristics
4.4. Recommendations for Stationary gSMS Operation
4.5. Roadmap for Future Implementation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Entekhabi, D. Recent Advances in Land-Atmosphere Interaction Research. Rev. Geophys. 1995, 33, 995–1003. [Google Scholar] [CrossRef]
- Miralles, D.G.; Teuling, A.J.; van Heerwaarden, C.C.; Vilà-Guerau de Arellano, J. Mega-Heatwave Temperatures Due to Combined Soil Desiccation and Atmospheric Heat Accumulation. Nat. Geosci 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Bessenbacher, V.; Gudmundsson, L.; Seneviratne, S.I. Optimizing Soil Moisture Station Networks for Future Climates. Geophys. Res. Lett. 2023, 50, e2022GL101667. [Google Scholar] [CrossRef]
- Stocker, B.D.; Zscheischler, J.; Keenan, T.F.; Prentice, I.C.; Seneviratne, S.I.; Peñuelas, J. Drought Impacts on Terrestrial Primary Production Underestimated by Satellite Monitoring. Nat. Geosci. 2019, 12, 264–270. [Google Scholar] [CrossRef]
- Malbéteau, Y.; Merlin, O.; Molero, B.; Rüdiger, C.; Bacon, S. DisPATCh as a Tool to Evaluate Coarse-Scale Remotely Sensed Soil Moisture Using Localized in Situ Measurements: Application to SMOS and AMSR-E Data in Southeastern Australia. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 221–234. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Vergopolan, N.; Sheffield, J.; Chaney, N.W.; Pan, M.; Beck, H.E.; Ferguson, C.R.; Torres-Rojas, L.; Eigenbrod, F.; Crow, W.; Wood, E.F. High-Resolution Soil Moisture Data Reveal Complex Multi-Scale Spatial Variability Across the United States. Geophys. Res. Lett. 2022, 49, e2022GL098586. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E.; et al. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Marino, P.; Peres, D.J.; Cancelliere, A.; Greco, R.; Bogaard, T.A. Soil Moisture Information Can Improve Shallow Landslide Forecasting Using the Hydrometeorological Threshold Approach. Landslides 2020, 17, 2041–2054. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A Soil Water Based Index as a Suitable Agricultural Drought Indicator. J. Hydrol. 2015, 522, 265–273. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; De Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling Sparse Ground-Based Soil Moisture Observations for the Validation of Coarse-Resolution Satellite Soil Moisture Products: Upscaling Soil Moisture. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Duygu, M.B.; Akyürek, Z. Using Cosmic-Ray Neutron Probes in Validating Satellite Soil Moisture Products and Land Surface Models. Water 2019, 11, 1362. [Google Scholar] [CrossRef]
- Meyer, R.; Zhang, W.; Kragh, S.J.; Andreasen, M.; Jensen, K.H.; Fensholt, R.; Stisen, S.; Looms, M.C. Exploring the Combined Use of SMAP and Sentinel-1 Data for Downscaling Soil Moisture beyond the 1 Km Scale. Hydrol. Earth Syst. Sci. 2022, 26, 3337–3357. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A Review of Spatial Downscaling of Satellite Remotely Sensed Soil Moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Green, J.K.; Seneviratne, S.I.; Berg, A.M.; Findell, K.L.; Hagemann, S.; Lawrence, D.M.; Gentine, P. Large Influence of Soil Moisture on Long-Term Terrestrial Carbon Uptake. Nature 2019, 565, 476–479. [Google Scholar] [CrossRef]
- Rodrigues, F.A., Jr.; Bramley, R.G.V.; Gobbett, D.L. Proximal Soil Sensing for Precision Agriculture: Simultaneous Use of Electromagnetic Induction and Gamma Radiometrics in Contrasting Soils. Geoderma 2015, 243–244, 183–195. [Google Scholar] [CrossRef]
- Evett, S.; Cepuder, P.; Heng, L.; HIgnett, C.; Laurent, J.P.; Ruelle, P. Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation and Sensor Technology; International Atomic Energy Agency: Vienna, Austria, 2008. [Google Scholar]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Robinson, D.A.; Binley, A.; Crook, N.; Day-Lewis, F.D.; Ferré, T.P.A.; Grauch, V.J.S.; Knight, R.; Knoll, M.; Lakshmi, V.; Miller, R.; et al. Advancing Process-Based Watershed Hydrological Research Using near-Surface Geophysics: A Vision for, and Review of, Electrical and Magnetic Geophysical Methods. Hydrol. Process. 2008, 22, 3604–3635. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- S. u., S.L.; Singh, D.N.; Shojaei Baghini, M. A Critical Review of Soil Moisture Measurement. Measurement 2014, 54, 92–105. [Google Scholar] [CrossRef]
- Hardie, M. Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture. Sensors 2020, 20, 6934. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gaurav, K.; Sonkar, G.K.; Lee, C.-C. Strategies to Measure Soil Moisture Using Traditional Methods, Automated Sensors, Remote Sensing, and Machine Learning Techniques: Review, Bibliometric Analysis, Applications, Research Findings, and Future Directions. IEEE Access 2023, 11, 13605–13635. [Google Scholar] [CrossRef]
- Mane, S.; Das, N.; Singh, G.; Cosh, M.; Dong, Y. Advancements in Dielectric Soil Moisture Sensor Calibration: A Comprehensive Review of Methods and Techniques. Comput. Electron. Agric. 2024, 218, 108686. [Google Scholar] [CrossRef]
- Kim, H.; Cosh, M.H.; Bindlish, R.; Lakshmi, V. Field Evaluation of Portable Soil Water Content Sensors in a Sandy Loam. Vadose Zone J. 2020, 19, e20033. [Google Scholar] [CrossRef]
- Kashyap, B.; Kumar, R. Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring. IEEE Access 2021, 9, 14095–14121. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Güntner, A.; Hübner, C.; Kusche, J.; Jonard, F.; Vey, S.; Vereecken, H. Emerging Methods for Noninvasive Sensing of Soil Moisture Dynamics from Field to Catchment Scale: A Review. Wiley Interdiscip. Rev. Water 2015, 2, 635–647. [Google Scholar] [CrossRef]
- Pradipta, A.; Soupios, P.; Kourgialas, N.; Doula, M.; Dokou, Z.; Makkawi, M.; Alfarhan, M.; Tawabini, B.; Kirmizakis, P.; Yassin, M. Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 2: Irrigation Management. Water 2022, 14, 1157. [Google Scholar] [CrossRef]
- Raffelli, G.; Previati, M.; Canone, D.; Gisolo, D.; Bevilacqua, I.; Capello, G.; Biddoccu, M.; Cavallo, E.; Deiana, R.; Cassiani, G.; et al. Local- and Plot-Scale Measurements of Soil Moisture: Time and Spatially Resolved Field Techniques in Plain, Hill and Mountain Sites. Water 2017, 9, 706. [Google Scholar] [CrossRef]
- Romano, N. Soil Moisture at Local Scale: Measurements and Simulations. J. Hydrol. 2014, 516, 6–20. [Google Scholar] [CrossRef]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The Emergence of Hydrogeophysics for Improved Understanding of Subsurface Processes over Multiple Scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, M.; Jensen, K.H.; Desilets, D.; Franz, T.E.; Zreda, M.; Bogena, H.R.; Looms, M.C. Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications. Vadose Zone J. 2017, 16, vzj2017.04.0086. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17, 180052. [Google Scholar] [CrossRef]
- Huisman, J.A.; Sperl, C.; Bouten, W.; Verstraten, J.M. Soil Water Content Measurements at Different Scales: Accuracy of Time Domain Reflectometry and Ground-Penetrating Radar. J. Hydrol. 2001, 245, 48–58. [Google Scholar] [CrossRef]
- Chang, X.; Jin, T.; Yu, K.; Li, Y.; Li, J.; Zhang, Q. Soil Moisture Estimation by GNSS Multipath Signal. Remote Sens. 2019, 11, 2559. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Baatz, R.; Hendricks Franssen, H.-J.; Vereecken, H. Accuracy of the Cosmic-Ray Soil Water Content Probe in Humid Forest Ecosystems: The Worst Case Scenario: Cosmic-Ray Probe in Humid Forested Ecosystems. Water Resour. Res. 2013, 49, 5778–5791. [Google Scholar] [CrossRef]
- Hawdon, A.; McJannet, D.; Wallace, J. Calibration and Correction Procedures for Cosmic-Ray Neutron Soil Moisture Probes Located across Australia. Water Resour. Res. 2014, 50, 5029–5043. [Google Scholar] [CrossRef]
- Lv, L.; Franz, T.E.; Robinson, D.A.; Jones, S.B. Measured and Modeled Soil Moisture Compared with Cosmic-Ray Neutron Probe Estimates in a Mixed Forest. Vadose Zone J. 2014, 13, vzj2014.06.0077. [Google Scholar] [CrossRef]
- Schrön, M.; Köhli, M.; Scheiffele, L.; Iwema, J.; Bogena, H.R.; Lv, L.; Martini, E.; Baroni, G.; Rosolem, R.; Weimar, J.; et al. Improving Calibration and Validation of Cosmic-Ray Neutron Sensors in the Light of Spatial Sensitivity. Hydrol. Earth Syst. Sci. 2017, 21, 5009–5030. [Google Scholar] [CrossRef]
- Franz, T.E.; Zreda, M.; Rosolem, R.; Ferre, T.P.A. Field Validation of a Cosmic-Ray Neutron Sensor Using a Distributed Sensor Network. Vadose Zone J. 2012, 11, vzj2012.0046. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Loescher, H.; Ayres, E.; Duffy, P.; Luo, H.; Brunke, M. Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs. PLoS ONE 2014, 9, e83216. [Google Scholar] [CrossRef] [PubMed]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field Observations of Soil Moisture Variability across Scales: Soil Moisture Variability across Scales. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Western, A.W.; Blöschl, G. On the Spatial Scaling of Soil Moisture. J. Hydrol. 1999, 217, 203–224. [Google Scholar] [CrossRef]
- Jackson, T.J.; O’Neill, P.E.; Swift, C.T. Passive Microwave Observation of Diurnal Surface Soil Moisture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1210–1222. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive Microwave Remote Sensing of Soil Moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Vergopolan, N.; Chaney, N.W.; Pan, M.; Sheffield, J.; Beck, H.E.; Ferguson, C.R.; Torres-Rojas, L.; Sadri, S.; Wood, E.F. SMAP-HydroBlocks, a 30-m Satellite-Based Soil Moisture Dataset for the Conterminous US. Sci. Data 2021, 8, 264. [Google Scholar] [CrossRef]
- Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring Soil Moisture Content Non-Invasively at Intermediate Spatial Scale Using Cosmic-Ray Neutrons. Geophys. Res. Lett. 2008, 35, L21402. [Google Scholar] [CrossRef]
- Köhli, M.; Schrön, M.; Zreda, M.; Schmidt, U.; Dietrich, P.; Zacharias, S. Footprint Characteristics Revised for Field-Scale Soil Moisture Monitoring with Cosmic-Ray Neutrons. Water Resour. Res. 2015, 51, 5772–5790. [Google Scholar] [CrossRef]
- Brogi, C.; Bogena, H.R.; Köhli, M.; Huisman, J.A.; Hendricks Franssen, H.-J.; Dombrowski, O. Feasibility of Irrigation Monitoring with Cosmic-Ray Neutron Sensors. Geosci. Instrum. Methods Data Syst. 2022, 11, 451–469. [Google Scholar] [CrossRef]
- Schrön, M.; Köhli, M.; Zacharias, S. Signal Contribution of Distant Areas to Cosmic-Ray Neutron Sensors—Implications for Footprint and Sensitivity. Hydrol. Earth Syst. Sci. 2023, 27, 723–738. [Google Scholar] [CrossRef]
- van der Veeke, S.; Limburg, J.; Koomans, R.L.; Söderström, M.; de Waal, S.N.; van der Graaf, E.R. Footprint and Height Corrections for UAV-Borne Gamma-Ray Spectrometry Studies. J. Environ. Radioact. 2021, 231, 106545. [Google Scholar] [CrossRef] [PubMed]
- Baldoncini, M.; Albéri, M.; Chiarelli, E.; Giulia Cristina Raptisa, K.; Strati, V.; Mantovani, F. Investigating the Potentialities of Monte Carlo Simulation for Assessing Soil Water Content via Proximal Gamma-Ray Spectroscopy. J. Environ. Radioact. 2018, 192, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Gianessi, S.; Polo, M.; Stevanato, L.; Lunardon, M.; Francke, T.; Oswald, S.; Ahmed, H.; Tolosa, A.; Weltin, G.; Dercon, G.; et al. Testing a Novel Sensor Design to Jointly Measure Cosmic-Ray Neutrons, Muons and Gamma Rays for Non-Invasive Soil Moisture Estimation. Geosci. Instrum. Methods Data Syst. 2022, 13, 9–25. [Google Scholar] [CrossRef]
- Grasty, R.L. Atmospheric Absorption of 2.62 MeV Gamma-Ray Photons Emitted From the Ground. Geophysics 1975, 40, 1058–1065. [Google Scholar] [CrossRef]
- Loijens, H.S. Determination of Soil Water Content from Terrestrial Gamma Radiation Measurements. Water Resour. Res. 1980, 16, 564–573. [Google Scholar] [CrossRef]
- Carroll, T.R. Airborne Soil Moisture Measurement Using Natural Terrestrial Gamma Radiation. Soil Sci. 1981, 132, 358–366. [Google Scholar] [CrossRef]
- Duval, J.S.; Cook, B.; Adams, J.A.S. Circle of Investigation of an Air-Borne Gamma-Ray Spectrometer. J. Geophys. Res. 1971, 76, 8466–8470. [Google Scholar] [CrossRef]
- van der Veeke, S. UAV-Borne Radioelement Mapping: Towards a Guideline and Verification Methods for Geophysical Field Measurements. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2023. [Google Scholar]
- Grasty, R.L. Gamma Ray Spectrometric Methods in Uranium Exploration-Theory and Operational Procedures; Geological Survey of Canada: Ottawa, ON, USA, 1979; p. 31. [Google Scholar]
- Grasty, R.L.; Kosanke, K.L.; Foote, R.S. Fields of View of Airborne Gamma-ray Detectors. Geophysics 1979, 44, 1447–1457. [Google Scholar] [CrossRef]
- Baldoncini, M.; Albéri, M.; Bottardi, C.; Chiarelli, E.; Kassandra Giulia Cristina Raptisa,; Strati, V. ; Mantovani, F. Biomass Water Content Effect on Soil Moisture Assessment via Proximal Gamma-Ray Spectroscopy. Geoderma 2019, 335, 69–77. [Google Scholar] [CrossRef]
- Zreda, M.; Shuttleworth, W.J.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. COSMOS: The COsmic-Ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef]
- Hendriks, P.H.G.M.; Limburg, J.; de Meijer, R.J. Full-Spectrum Analysis of Natural γ-Ray Spectra. J. Environ. Radioact. 2001, 53, 365–380. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Guidelines for Radio Element Mapping Using Gamma Ray Spectrometry Data; Technical Documents; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- Baatz, R.; Bogena, H.R.; Hendricks Franssen, H.-J.; Huisman, J.A.; Montzka, C.; Vereecken, H. An Empirical Vegetation Correction for Soil Water Content Quantification Using Cosmic Ray Probes. Water Resour. Res. 2015, 51, 2030–2046. [Google Scholar] [CrossRef]
- Franz, T.E.; Zreda, M.; Ferre, T.P.A.; Rosolem, R.; Zweck, C.; Stillman, S.; Zeng, X.; Shuttleworth, W.J. Measurement Depth of the Cosmic Ray Soil Moisture Probe Affected by Hydrogen from Various Sources: Measurement Depth of the Cosmic-Ray Soil Moisture Probe. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Reinhardt, N.; Herrmann, L. Gamma-ray Spectrometry as Versatile Tool in Soil Science: A Critical Review. J. Plant Nutr. Soil Sci. 2019, 182, 9–27. [Google Scholar] [CrossRef]
- Weinhold, B. The Platte River High Plains Aquifer (PRHPA); USDA: Washington, DC, USA, 2020. [Google Scholar]
- Franz, T.E.; Wang, T.; Avery, W.; Finkenbiner, C.; Brocca, L. Combined Analysis of Soil Moisture Measurements from Roving and Fixed Cosmic Ray Neutron Probes for Multiscale Real-Time Monitoring. Geophys. Res. Lett. 2015, 42, 3389–3396. [Google Scholar] [CrossRef]
- Feng, T.C.; Cheng, J.P.; Jia, M.Y.; Wu, R.; Feng, Y.J.; Su, C.Y.; Chen, W. Relationship between Soil Bulk Density and PVR of in Situ γ Spectra | Elsevier Enhanced Reader. Nucl. Instrum. Methods Phys. Res. 2009, 608, 92–98. [Google Scholar] [CrossRef]
- Köhli, M.; Schrön, M.; Zacharias, S.; Schmidt, U. URANOS v1.0—the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research. Geosci. Model Dev. 2023, 16, 449–477. [Google Scholar] [CrossRef]
- Avery, W.A.; Finkenbiner, C.; Franz, T.E.; Wang, T.; Nguy-Robertson, A.L.; Suyker, A.; Arkebauer, T.; Muñoz-Arriola, F. Incorporation of Globally Available Datasets into the Roving Cosmic-Ray Neutron Probe Method for Estimating Field-Scale Soil Water Content. Hydrol. Earth Syst. Sci. 2016, 20, 3859–3872. [Google Scholar] [CrossRef]
- Franz, T.E.; Zreda, M.; Rosolem, R.; Hornbuckle, B.K.; Irvin, S.L.; Adams, H.; Kolb, T.E.; Zweck, C.; Shuttleworth, W.J. Ecosystem-Scale Measurements of Biomass Water Using Cosmic Ray Neutrons: ECOSYSTEM MEASUREMENTS OF BIOMASS WATER. Geophys. Res. Lett. 2013, 40, 3929–3933. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Seltzer, S.M. NIST Standard Reference Database 126; Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Skoien, J.O.; Bloschl, G.; Laaha, G.; Pebesma, E.; Parajka, J.; Viglione, A. Rtop: An R Package for Interpolation of Data with a Variable Spatial Support, with an Example from River Networks. Comput. Geosci. 2014, 67, 180–190. [Google Scholar] [CrossRef]
- McJannet, D.; Franz, T.; Hawdon, A.; Boadle, D.; Baker, B.; Almeida, A.; Silberstein, R.; Lambert, T.; Desilets, D. Field Testing of the Universal Calibration Function for Determination of Soil Moisture with Cosmic-Ray Neutrons. Water Resour. Res. 2014, 50, 5235–5248. [Google Scholar] [CrossRef]
- Jakobi, J.; Huisman, J.A.; Köhli, M.; Rasche, D.; Vereecken, H.; Bogena, H.R. The Footprint Characteristics of Cosmic Ray Thermal Neutrons. Geophys Res Lett 2021, 48, e2021GL094281. [Google Scholar] [CrossRef]
- Rasche, D.; Köhli, M.; Schrön, M.; Blume, T.; Güntner, A. Towards Disentangling Heterogeneous Soil Moisture Patterns in Cosmic-Ray Neutron Sensor Footprints. Hydrol. Earth Syst. Sci. 2021, 25, 6547–6566. [Google Scholar] [CrossRef]
- Köhli, M.; Weimar, J.; Schrön, M.; Baatz, R.; Schmidt, U. Soil Moisture and Air Humidity Dependence of the Above-Ground Cosmic-Ray Neutron Intensity. Front. Water 2021, 2, 544847. [Google Scholar] [CrossRef]
- Schattan, P.; Köhli, M.; Schrön, M.; Baroni, G.; Oswald, S.E. Sensing Area-Average Snow Water Equivalent with Cosmic-Ray Neutrons: The Influence of Fractional Snow Cover. Water Resour. Res. 2019, 55, 10796–10812. [Google Scholar] [CrossRef]
- Jakobi, J.; Huisman, J.A.; Vereecken, H.; Diekkrüger, B.; Bogena, H.R. Cosmic Ray Neutron Sensing for Simultaneous Soil Water Content and Biomass Quantification in Drought Conditions. Water Resour. Res. 2018, 54, 7383–7402. [Google Scholar] [CrossRef]
- Jakobi, J.; Huisman, J.A.; Fuchs, H.; Vereecken, H.; Bogena, H.R. Potential of Thermal Neutrons to Correct Cosmic-Ray Neutron Soil Moisture Content Measurements for Dynamic Biomass Effects. Water Resour. Res. 2022, 58, e2022WR031972. [Google Scholar] [CrossRef]
- Allyson, J.D.; Sanderson, D.C.W. Monte Carlo Simulation of Environmental Airborne Gamma-Spectrometry. J. Environ. Radioact. 1998, 38, 259–282. [Google Scholar] [CrossRef]
- Androulakaki, E.G.; Kokkoris, M.; Tsabaris, C.; Eleftheriou, G.; Patiris, D.L.; Pappa, F.K.; Vlastou, R. In Situ γ-Ray Spectrometry in the Marine Environment Using Full Spectrum Analysis for Natural Radionuclides. Appl. Radiat. Isot. 2016, 114, 76–86. [Google Scholar] [CrossRef]
- Billings, S.; Hovgaard, J. Modeling Detector Response in Airborne Gamma-ray Spectrometry. Geophysics 1999, 64, 1378–1392. [Google Scholar] [CrossRef]
- Brückner, J.; Masarik, J. Planetary Gamma-Ray Spectroscopy of the Surface of Mercury. Planet. Space Sci. 1997, 45, 39–48. [Google Scholar] [CrossRef]
- Vlastou, R.; Ntziou, I.T.; Kokkoris, M.; Papadopoulos, C.T.; Tsabaris, C. Monte Carlo Simulation of γ-Ray Spectra from Natural Radionuclides Recorded by a NaI Detector in the Marine Environment. Appl. Radiat. Isot. 2006, 64, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Serafini, A.; Albéri, M.; Amoretti, M.; Anconelli, S.; Bucchi, E.; Caselli, S.; Chiarelli, E.; Cicala, L.; Colonna, T.; De Cesare, M.; et al. Proximal Gamma-Ray Spectroscopy: An Effective Tool to Discern Rain from Irrigation. Remote Sens. 2021, 13, 4103. [Google Scholar] [CrossRef]
Method | Accuracy | Advantages | Disadvantages | References |
---|---|---|---|---|
Neutron probe | <0.010 m3 m−3 RMSE | Not affected by temperature, high accuracy and sensitivity | Active radiation source, does not monitor continuously, low spatial representativeness | [18] |
Dielectric probes | 0.010 to 0.041 m3 m−3 RMSD | Can monitor continuously, commercially available and easy to operate | Low spatial representativeness, potential for installation error (air gaps), site-specific calibration required for best accuracy | [25,26] |
Ground penetrating radar | 0.030 m3 m−3 RMSE | Can map SWC at various spatial scales | Processing advancements cannot be applied by non-experts | [34,35] |
Global positioning system | 0.035 m3 m−3 RMSE | Represents 10 s to 100 s of meters, availability of GPS signals | Further research required to standardize technique, shallow measurement depth (~5 cm), vegetation introduces error | [23,36] |
Cosmic-ray neutron sensor | 0.010 to 0.040 m3 m−3 RMSE | Higher spatial representativeness, continuous monitoring | Isolating SWC signal from other hydrogen pools can be challenging, corrections require expertise | [37,38,39,40,41] |
Soil Moisture Active Passive Mission (microwave remote sensing) | 0.040 m3 m−3 (target error) | Higher spatial representativeness (~10 km) | Shallow measurement depth (~5 cm), low temporal resolution, vegetation introduces error | [42] |
Sample Date | Vegetation | Sample Date | Vegetation |
---|---|---|---|
5 August 2021 | Maize | 31 August 2022 | Soybean |
19 August 2021 | Maize | 17 September 2022 | Soybean |
3 September 2021 | Maize | 5 October 2022 | Bare soil |
17 September 2021 | Maize | 22 October 2022 | Bare soil |
15 October 2021 | Maize | 15 May 2023 | Maize |
29 October 2021 | Maize | 8 June 2023 | Maize |
12 November 2021 | Maize stover | 21 June 2023 | Maize |
3 December 2021 | Maize stover | 10 July 2023 | Maize |
25 March 2022 | Maize stover | 24 July 2023 | Maize |
15 April 2022 | Maize stover | 9 August 2023 | Maize |
18 May 2022 | Maize stover | 28 August 2023 | Maize |
27 May 2022 | Maize stover | 21 September 2023 | Maize |
3 August 2022 | Soybean | 23 October 2023 | Maize stover |
Soil Sample Depth Interval (m) | Weight |
---|---|
0–0.05 | 0.54 |
0.05–0.1 | 0.23 |
0.10–0.15 | 0.11 |
0.15–0.20 | 0.059 |
0.20–0.25 | 0.032 |
0.25–0.30 | 0.018 |
Depth (cm) | Lattice Water (g g−1) | Soil Organic Carbon Water (g g−1) |
---|---|---|
0–10 | 0.049 | 0.005 |
10–20 | 0.049 | 0.004 |
20–30 | 0.054 | 0.004 |
Weighted | 0.049 | 0.005 |
Depth (cm) | Bulk Density (g cm−3) | |||
---|---|---|---|---|
8 June 2023 | 9 August 2023 | 23 October 2023 | Average | |
0–5 | NA | NA | 1.18 ± 0.09 | 1.18 ± 0.09 |
5–10 | NA | 1.04 ± 0.08 | 1.42 ± 0.06 | 1.23 ± 0.07 |
10–15 | 1.36 ± 0.09 | 1.37 ± 0.07 | 1.52 ± 0.06 | 1.42 ± 0.07 |
15–20 | 1.44 ± 0.05 | 1.52 ± 0.05 | 1.49 ± 0.05 | 1.48 ± 0.05 |
20–25 | 1.46 ± 0.03 | 1.5 ± 0.09 | 1.41 ± 0.05 | 1.46 ± 0.06 |
25–30 | 1.37 ± 0.05 | 1.46 ± 0.05 | 1.51 ± 0.05 | 1.45 ± 0.05 |
Weighted: | 1.26 ± 0.08 |
Equation | RMSE (g g−1) | R2 | Adj R2 | (Bq kg−1) | a |
---|---|---|---|---|---|
15 | 0.045 | 0.34 | 0.25 | 792 | NA |
16 | 0.033 | 0.66 | 0.59 | 897 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, S.M.; Franz, T.E.; Morris, T.C.; Mullins, B. Field Testing of Gamma-Spectroscopy Method for Soil Water Content Estimation in an Agricultural Field. Sensors 2024, 24, 2223. https://doi.org/10.3390/s24072223
Becker SM, Franz TE, Morris TC, Mullins B. Field Testing of Gamma-Spectroscopy Method for Soil Water Content Estimation in an Agricultural Field. Sensors. 2024; 24(7):2223. https://doi.org/10.3390/s24072223
Chicago/Turabian StyleBecker, Sophia M., Trenton E. Franz, Tanessa C. Morris, and Bailey Mullins. 2024. "Field Testing of Gamma-Spectroscopy Method for Soil Water Content Estimation in an Agricultural Field" Sensors 24, no. 7: 2223. https://doi.org/10.3390/s24072223
APA StyleBecker, S. M., Franz, T. E., Morris, T. C., & Mullins, B. (2024). Field Testing of Gamma-Spectroscopy Method for Soil Water Content Estimation in an Agricultural Field. Sensors, 24(7), 2223. https://doi.org/10.3390/s24072223