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Abstract: Gamma-ray spectroscopy (GRS) enables continuous estimation of soil water content (SWC)
at the subfield scale with a noninvasive sensor. Hydrological applications, including hyper-resolution
land surface models and precision agricultural decision making, could benefit greatly from such
SWC information, but a gap exists between established theory and accurate estimation of SWC from
GRS in the field. In response, we conducted a robust three-year field validation study at a well-
instrumented agricultural site in Nebraska, United States. The study involved 27 gravimetric water
content sampling campaigns in maize and soybean and 40K specific activity (Bq kg−1) measurements
from a stationary GRS sensor. Our analysis showed that the current method for biomass water content
correction is appropriate for our maize and soybean field but that the ratio of soil mass attenuation to
water mass attenuation used in the theoretical equation must be adjusted to satisfactorily describe the
field data. We propose a calibration equation with two free parameters: the theoretical 40K intensity
in dry soil and a, which creates an “effective” mass attenuation ratio. Based on statistical analyses of
our data set, we recommend calibrating the GRS sensor for SWC estimation using 10 profiles within
the footprint and 5 calibration sampling campaigns to achieve a cross-validation root mean square
error below 0.035 g g−1.

Keywords: soil water content; gamma-ray spectroscopy; field validation

1. Introduction
1.1. Applications Requiring Local Scale Soil Water Content Monitoring

Soil water content (SWC) plays a vital role in the water and energy balance by parti-
tioning the mass and energy fluxes between the land surface and atmosphere [1–3], making
it an essential state variable for climate and meteorological monitoring and forecasting [4].
SWC data are needed for numerical watershed and land surface models as well as valida-
tion of satellite products [5,6]. At the scale of tens of meters, SWC ground observations
such as the gamma-ray soil moisture sensor (gSMS) are particularly needed given the
historical challenge of collecting data at this scale [6], the current spatial resolution of
numerical models and satellite products, and the critical amount of variability that exists at
the subfield scale [7].

Hydrological applications for subfield-scale SWC observations include modeling and
forecasting of streamflow, floods, and shallow landslides [8–10]. Irrigation management
also relies upon local-scale SWC information to support crop production, water conserva-
tion, and reduction in nutrient runoff and leaching. Within climate monitoring, examples
of SWC use include indicating agricultural drought [11] and SWC as a predictor of wildfire
risk associated with drought [8]. Local-scale SWC also finds application in validating land
surface models and satellite SWC products. This task proves challenging when relying
solely on point sensor data because it tends to capture an excessive amount of SWC vari-
ability [12–14]. While point sensors provide SWC information with too high variability,
SWC with resolutions > 1 km do not capture enough variability for accurate description of
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hydrological, climatic, and meteorological processes impacting many SWC applications,
especially across variable landscapes [7,15]. In addition to hydrological, climatic, and
meteorological processes, local-scale SWC variability or “hotspots” affect ecosystems (bio-
diversity and species distribution), plant nutrient cycling and photosynthesis rates [7,16,17].
The SWC monitoring community requires a reliable SWC method that captures critical
variability at the subfield scale, supports increased resolution of land surface models, and
fills the historic gap in local-scale SWC measurements.

1.2. Existing Soil Water Content Sensors

Numerous in situ and remote SWC sensors are currently available, and we refer the
reader to the literature for more in-depth analysis [18–22]. Advantages, disadvantages, and
accuracy of common SWC sensors are briefly presented here for comparison with the gSMS
(Table 1). Recent reviews of soil moisture sensing technologies have found that in situ
sensing is dominated by dielectric methods, including time domain reflectometry (TDR),
frequency domain reflectometry, and capacitance probes [8,22–24]. The authors of [25]
found that accuracy for dielectric methods generally ranges from ±0.01 to ±0.19 m3 m−3

and improves to between ±0.01 and ±0.04 m3 m−3 for studies with field-specific calibra-
tions. Similarly, ref. [26] showed that, with site-specific calibration, portable dielectric
probes perform with a root mean square error (RMSE) of 0.025 m3 m−3 in a sandy loam soil.
In addition to dielectric methods, point-scale SWC can be estimated with neutron scattering,
active gamma-ray attenuation, tensiometer, resistance block, and thermal dissipation block
methods [19,22,27]. Additional in situ soil moisture sensors in the early stages of devel-
opment include actively heated fiber optics, hydrogels, high-capacity tensiometers, radio
frequency identification, and novel pairings of acoustic, radio, and seismic transceivers [23].
Lack of spatial representativeness by point SWC sensors and the necessity of measurements
that integrate large areas (>100 m2) to fill the gap between the point and remote sensing
scale are identified throughout recent reviews [28–31]. Methods for capturing SWC above
the point scale include wireless sensor networks, on-the-go dielectric methods, electro-
magnetic induction, ground penetrating radar (GPR), global positioning system (GPS),
and cosmic-ray neutron sensing [19,21,32–34]. Given the accuracy of existing in situ and
geophysical methods (Table 1), emerging SWC sensors such as the gSMS should aim for
RMSE ≤ 0.04 m3 m−3 to provide hydrological applications with useful subfield-scale data.

Table 1. Accuracies of major SWC sensing methods (from field validation studies when possible) are
summarized using root mean square error (RMSE) or root mean square deviation (RMSD). Prominent
advantages and disadvantages of each method are also provided.

Method Accuracy Advantages Disadvantages References

Neutron probe <0.010 m3 m−3 RMSE

Not affected by
temperature, high

accuracy and
sensitivity

Active radiation source, does not
monitor continuously, low spatial

representativeness
[18]

Dielectric probes 0.010 to 0.041 m3 m−3

RMSD

Can monitor
continuously,

commercially available
and easy to operate

Low spatial representativeness,
potential for installation error (air

gaps), site-specific calibration
required for best accuracy

[25,26]

Ground penetrating
radar 0.030 m3 m−3 RMSE

Can map SWC at
various spatial scales

Processing advancements cannot be
applied by non-experts [34,35]

Global positioning
system 0.035 m3 m−3 RMSE

Represents 10 s to 100 s
of meters, availability

of GPS signals

Further research required to
standardize technique, shallow

measurement depth (~5 cm),
vegetation introduces error

[23,36]
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Table 1. Cont.

Method Accuracy Advantages Disadvantages References

Cosmic-ray neutron
sensor

0.010 to 0.040 m3 m−3

RMSE

Higher spatial
representativeness,

continuous monitoring

Isolating SWC signal from other
hydrogen pools can be challenging,

corrections require expertise
[37–41]

Soil Moisture Active
Passive Mission

(microwave remote
sensing)

0.040 m3 m−3

(target error)

Higher spatial
representativeness

(~10 km)

Shallow measurement depth
(~5 cm), low temporal resolution,

vegetation introduces error
[42]

1.3. Spatial Scale of Soil Water Content Monitoring

Local SWC spatial variability results from soil heterogeneity, topography, landcover,
meteorological forcing, and temporal dynamics of mean SWC [12]. These factors produce
an SWC spatial correlation length (defined by the range of the semi-variogram) that is site-
specific and dynamic. The site-specificity of SWC spatial correlation length is demonstrated
in one study sampling 60 different sites in North America, where SWC spatial correlation
length ranged from 2 to 78 m [43]. Spatial variability is highest in the intermediate SWC
range and lower at SWC extremes [44], so dynamics of mean SWC due to factors such
as vegetation impact SWC variability. To capture site-specific and dynamic SWC spatial
variability, specific monitoring scales and extents are necessary [45].

The available SWC monitoring methods can be arranged on a continuum comprised
of the point, subfield, field (100 s of m), and coarse (>1 km) scales. Point-scale measure-
ments (TDR and other dielectric sensors with a volley-ball-sized sensing volume) [18] and
coarse measurements are currently more prolific than methods characterizing the local
(subfield and field) scale. Coarse resolution SWC is available from satellite missions using
microwaves, such as Soil Moisture Active Passive (SMAP), which obtains SWC estimates
with ~10 km resolution for the top 5 cm of the soil [46,47]. Vergopolan et al. [7] utilized
SMAP-HydroBlocks, a 30 m resolution SWC data set for the top 5 cm of the soil across the
United States [48] and found that, on average, 48% of SWC spatial variability information is
lost when moving from the 30 m to the 1 km scale. Considering emerging 30 m resolution
land surface models and the critical SWC variability seen at the 30 m scale, obtaining SWC
observations at this scale is crucial.

Potential SWC monitoring methods at the local 30 m scale include GPS, the cosmic-ray
neutron sensor (CRNS), and GRS. GPS covers a horizontal area with a radius of 50 m for
antenna height of one meter and a sensing depth that varies from a few millimeters to
7 cm depending on water content [23]. CRNS estimates SWC for a circumference with a
radius around 200 m depending on installation height and a moisture-dependent sensing
depth of 12 to 70 cm [49] or 15 to 83 cm [50]. The CRNS is a well-established and accurate
method and senses a deeper signal than GPS [33], but challenges arise for fields that are
smaller than the CRNS footprint, especially when irrigation is occurring or when SWC
is changing in distant areas of the footprint [51,52]. Fortunately, the gSMS is equipped to
describe the subfield scale at greater sensing depth than GPS and match the 30 m scale more
closely than CRNS. When installed at a height ~2 m above the soil surface, the gSMS has
a circular footprint radius of 24 m and maximum sensing depth of 70 cm [53]. The gSMS
has been deployed within in situ, roving, and unmanned aerial vehicle campaigns and
demonstrates potential to accurately measure subfield SWC [53–55]. Still, very few attempts
have been made to quantify the relationship between SWC and gamma-ray intensity [28].
Before gSMS subfield SWC is adopted for capturing the critical variability required for
hydrological applications, the underlying theory for estimating SWC from GRS must be
further validated with field experiments.
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1.4. Theoretical Relationship between Detected Gamma Radiation and Soil Water Content

Theoretical gamma-ray intensity detected by the gSMS is determined by the cross-
sectional area of the detector, detector efficiency, volume from which gamma rays originate,
height of the detector, and attenuation of the gamma rays in air and in soil [56]. The
attenuation of gamma rays in soil is strongly influenced by the SWC because the electron
density of water is 1.11 times that of a typical dry soil [57]. This relationship between
SWC and gamma-ray intensity is expressed in terms of the change in detected gamma-ray
intensity due to change in hydrogen content within the sensing volume. Examples of this
expression for a point source can be found in [57,58].

The general equation for total gamma-ray intensity (s−1) detected from a radioactive
volume with a flat surface, Itotal , from a height, h, above the ground is [59,60]:

Itotal =
Aϵγ

4π

Rmax∫
Rmin

θ1∫
0

2π∫
0

1
R2 e−µaρara e−µgρgrg sin(θ)R2dφdθdR, (1)

with Rmin ≥ h/cosθ , ra = h/cosθ , and rg = R − h/cosθ . A is the cross-sectional area of
the detector (m2), ϵ is the efficiency of the detector for a given energy, γ is the number of
gamma rays emitted per cubic meter of source material per second, R is the total distance
between the detector and gamma-ray origin (m) and equal to the sum of ra and rg, θ is the
angle of the detector with respect to the normal of the soil surface (radians), and φ is the
third spherical co-ordinate. The energy-dependent mass attenuation coefficients (m2 kg−1)
of the air and ground are µa and µg, respectively; ρa and ρg are the densities (kg m−3) of the
air and ground, respectively; and ra and rg are the distances (m) travelled by gamma rays in
the air and ground, respectively. Limits of R and θ can be chosen to model a constant source
depth [59], an infinite source depth [61], or a depth defined by an isoline along which the
total gamma-ray attenuation by the ground and air is constant [53]. The isoline approach
enables estimation of the source volume and corresponding footprint characteristics.

1.5. Additional Factors Affecting Gamma Radiation Estimation of SWC

Current research on GRS sensing of SWC is disentangling complicating aspects such
as the height-dependent sensing volume, SWC and soil heterogeneity, and sources of
signal attenuation besides pore soil water (e.g., biomass). Historic studies regarding GRS
sensing of SWC were airborne [58,62], except for [57], who collected data with a proximal
portable gamma-ray spectrometer and compared SWC estimates at the 0.1 and 0.25 m
soil depths. Loijens [57] also explored vertical soil heterogeneity numerically; error in
estimated gravimetric water content using total gamma-ray intensity due to violation of the
homogenous SWC profile assumption was concluded to be around 1.8% typically and 4 to
5% in extreme cases. From there, we jump to the present day, where [53] recently addressed
the need to better quantify the gamma-ray sensing volume and make height corrections for
detector heights between 0 and 40 m. Recent research has also addressed the problem of
biomass correction with a Monte Carlo simulation approach [63]. By modeling biomass as
an equivalent water layer above the soil surface, ref. [63] showed that neglecting to correct
for biomass leads to an over 30% positive systematic bias in SWC estimation. The authors
of [63] write the equation for gravimetric SWC from 40K intensity at measurement time,
wΛ

γK(t), with the Monte-Carlo-derived biomass water correction factor, ΛK(BWE(t)), as:

wΛ
γK(t) =

SCal
K · ΛK(BWE(t))

Sk(t)
·
[
Ω + wCal

G

]
− Ω, (2)

where:
ΛK(BWE(t)) = (−0.0120 ± 0.0001) ∗ BWE + 1.0 (3)

and BWE is biomass water equivalence in mm at measurement time. SCal
K is the 40K net

count rate (cps) at calibration time, wCal
G is the gravimetric water content at calibration time
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(g g−1), and Sk(t) is the 40K net count rate at measurement time (cps). In addition to pore
water, lattice (structural) water and soil organic carbon water are also attenuating hydrogen
pools [64]. The ratio of the mass attenuation coefficient of soil to that of water, Ψ, and the
fraction of structural water, f struct

H2O , are incorporated in the dimensionless Ω term used in
Equation (2).

Ω = Ψ + [1 − Ψ]· f struct
H2O . (4)

In application, we assume that Ψ is equal to that of pure silica soil. Applying
Equation (2) to four observations in a tomato field, a 4% average relative discrepancy
was found between GRS-estimated SWC and gravimetric SWC [63].

In contrast to biomass water content and detector height, factors such as soil mineralog-
ical composition and fluctuation in atmospheric water vapor and density have been shown
to have negligible influence on the SWC estimate at heights below 40 m [60]. Another
variable in the gSMS method is establishing standard data analysis practice for calibration.
Current practice is to use Full-Spectrum Analysis (FSA) to determine specific activity of
individual radionuclides because higher count rates are obtained as opposed to the values
from the traditionally used Windows Analysis [65,66]. Up to this point, studies have not
considered which analysis method is best suited for SWC estimation. The essential task
of validating theory and establishing a reliable method for SWC estimation using GRS
remains unfinished, in part due to the various factors that must be accounted for in the
calibration equation and overall methodology.

1.6. Approach

Research on SWC sensing with the CRNS has shown through both field-based and
modeling studies the importance of correcting for a variety of factors such as biomass water
content, soil organic carbon water, lattice water, and effective sensing depth controlled
by soil water content [64,67,68]. The calibration equation for the gSMS must incorporate
similar correction to be robust to field conditions, including those where biomass water
content may be changing rapidly and where soil bulk density may change over time due to
field operations. In addition to focused SWC monitoring with GRS, correction algorithms
for SWC are a pressing need in environmental gamma-ray spectroscopy research as a
whole [69]. Considering ease of access to in situ, portable, and UAV-mounted gamma-ray
spectrometers and potential of Monte Carlo simulations for understanding gamma-ray
transport, the GRS community is poised to make significant progress in establishing an
accurate subfield SWC sensing method built upon a validated theoretical model and
incorporated correction factors.

Within the context of the need for gSMS local-scale SWC observations and the re-
maining questions for the gSMS method implementation, we present a field validation
study in eastern Nebraska, United States. Gravimetric SWC data over a three-year period
that include soybean and maize growing seasons are compared with 40K specific activity
(determined with FSA) from an in situ gSMS and a theoretical calibration function similar
to [63]. We hypothesize that our robust calibration data set over a range of SWC and
vegetative conditions will allow us to validate and/or improve the calibration function
with biomass correction. We also utilize our data set with various statistical analyses to
offer insight into practical calibration methods and best practice.

2. Materials and Methods
2.1. Site Description

In this study, we tested the gSMS at an agricultural field within the Eastern Nebraska
Research and Extension Center near Mead, Nebraska, United States. The US-Ne3 site is
within the United States Department of Agriculture Long-term Agroecosystem Research
(LTAR) Network as well as the Ameriflux network. US-Ne3 is a no-till, rainfed site with a
maize–soybean rotation. Length of the frost-free growing season is approximately 161 days
and the majority of precipitation falls during the April to September growing season [70].
The mean annual precipitation is 760 mm and the mean annual temperature is 10 ◦C. The
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highest average monthly temperature (31 ◦C) occurs in July and the lowest (−9 ◦C) occurs
in February [70]. The soils are mollisol silt loams and silty clay loams (average texture of
30.1% clay, 58.7% silt, and 11.2% sand for 0–30 cm depth).

2.2. Instrumentation

The gamma-ray sensor used in this study is the 100 mL cesium iodide (CsI) gSMS
from Medusa Radiometrics. The gSMS was installed at a height of 1.86 m at the site in July
2021 (Figure 1), where it sums gamma-ray spectra over 15-min intervals and sends the data
wirelessly to the online Medusa portal every hour. The Medusa gSMS provides real-time
data processing, including energy stabilization and non-negative least squares FSA to
calculate specific activity (Bq kg−1) of 40K, 238U, and 232Th. Here, we use only 40K in SWC
estimation to avoid the error introduced by radon into the measured 238U concentration and
to streamline the initial field validation. For reference, 1% mass concentration of potassium
in rock converts to 40K specific activity of 313 Bq kg−1 [66]. The calibration file including
the standard spectra required for processing was provided by Medusa with purchase of
the gSMS and is recommended to be reliable for five years. Based upon installation height
and [53], the horizontal footprint of the gSMS for dry soil is estimated to be a circle with a
radius of 24 m and the vertical sensing depth is approximately 35 cm.
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The long-term agricultural research data collection at the site includes time-domain
reflectometry, a CRNS, an eddy-covariance tower, and biomass sampling. Six intensive
measurement zones (IMZ) are established at the site, from within which destructive biomass
sampling is conducted every 10 days during the growing season.

2.3. Gravimetric Water Content Sampling

Gravimetric water content was measured with a sample pattern designed to character-
ize the estimated gSMS sensing volume in the horizontal and vertical directions, assuming
95% of the gamma-ray signal originates within 24 m horizontally and 35 cm vertically.
Samples were collected every 60◦ at radii 0, 2, 5, and 12 m away from the gSMS for a total
of 133 samples for each campaign (Figure 2). In the vertical direction, seven total samples
were collected every 5 cm down to a maximum depth of 35 cm below the surface. Sample
tins were then returned to the lab, weighed, and dried at 105 ◦C for 48 h to determine the
ratio of mass of water (Mw) to mass of dry soil (Ms) in g g−1. Gravimetric water content,
θg, is defined as:

θg =
Mw

Ms
. (5)
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Figure 2. For each sampling campaign, samples were collected at 19 locations (blue points) surround-
ing the gSMS. At each of the 19 locations, 7 samples were collected over 5 cm depth intervals as
depicted on the left.

The θg for a given sample date was found by calculating a depth-weighted mean for
each vertical SWC profile and then taking the arithmetic average of the 19 sample locations.
The depth-weighting method is described in Section 2.5.

2.4. Biomass Characterization

We conducted 27 sampling campaigns between 2021 and 2023 in a variety of vegetative
conditions. Vegetation conditions for the sampling days are described in Table 2. Maize
stover describes conditions between maize harvest and soybean planting due to maize
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stalks left in the field. Bare soil conditions occurred after soybean harvest. Fresh and dry
aboveground biomass data from destructive sampling were used to calculate biomass water
equivalence (BWE) in mm following [71]. The BWE data points were linearly interpolated
to estimate the BWE at time of soil sampling. For maize stover, we estimate that a small
amount of BWE remains in the plant water and cellulose and decreases as the stalks continue
to dry through time, so BWE was assumed to be 0.5 mm in maize stover immediately
following maize harvest and to linearly decrease to a value of 0.01 mm at the time of
soybean harvest. The total BWE during the soybean growing season is the sum of the
estimated maize stover BWE and the soybean BWE. Bare soil conditions were assumed to
be equivalent to 0 mm BWE. Residue was not quantified in this study.

Table 2. Surface vegetation type is reported for the 27 gravimetric water content sample dates.

Sample Date Vegetation Sample Date Vegetation

5 August 2021 Maize 31 August 2022 Soybean
19 August 2021 Maize 17 September 2022 Soybean

3 September 2021 Maize 5 October 2022 Bare soil
17 September 2021 Maize 22 October 2022 Bare soil

15 October 2021 Maize 15 May 2023 Maize
29 October 2021 Maize 8 June 2023 Maize

12 November 2021 Maize stover 21 June 2023 Maize
3 December 2021 Maize stover 10 July 2023 Maize

25 March 2022 Maize stover 24 July 2023 Maize
15 April 2022 Maize stover 9 August 2023 Maize
18 May 2022 Maize stover 28 August 2023 Maize
27 May 2022 Maize stover 21 September 2023 Maize

3 August 2022 Soybean 23 October 2023 Maize stover

2.5. Depth-Weighting of Soil Samples

Gravimetric samples were depth-weighted to reflect the fact that the soil volume closer
to the detector contributes more of the detected gamma signal than soil farther away from
the sensor. However, we do not incorporate the change in effective sensing depth due to
changes in SWC. An example of depth-weighting with the added complexity of variable
effective sensing depth is found in [68]. The total gamma flux density (s−1) at height h (m),
Φtot(h), for a semi-infinite homogenous source volume is [72]:

Φtot(h) =
AvPγ

2µs

∫ π
2

0
sinθe

−µah
cosθ dθ. (6)

The energy-dependent linear attenuation coefficients for air and soil are µa and µs,
respectively (m−1), and the flux is calculated for detector angle θ from 0 to π

2 , where θ
is the angle measured from the vertical line normal to the soil surface. Av is the unit
volume activity (Bqm−3) and Pγ is the gamma-ray intensity in “number of emitted gamma-
rays/Bq”. For simplicity, we exclude horizontal variation in contribution to gamma-ray
flux and focus on the vertical direction. To examine the vertical direction, we find the
gamma flux, Φ(h, t), for a source with fixed depth and infinite radius for a detector placed
at height h produced within a soil thickness t (m) in simplified notation for the implicit
gamma energy dependence [54,72]:

Φ(h, t) =
AvPγ

2µs

∫ π
2

0
sinθe

−µah
cosθ

[
1 − e

−µs t
cosθ

]
dθ. (7)

Then, the cumulative percent contribution to the total detected gamma flux at a given
depth, Φrel(h, t), is the gamma flux in overlying soil thickness, t, over the total gamma flux:

Φrel(h, t) =
Φ(h, t)
Φtot(h)

. (8)
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Let n be the number of sampling intervals and let 0 ≤ l0 < . . . ln be an arbitrary
sampling partition of the interval [0, tmax]. For instance, our sampling partitions are (0,
5, 10, . . ., 30, tmax). tmax represents the soil thickness from which over 99% of the gamma
signal originates, which is calculated for our study to be 0.33 m for h = 1.86 m, bulk density
1.37 g cm3, and the average water content observed. To understand the extent to which
our sensor’s effective sensing depth may vary, the theoretical depth from which different
percentages of the total detected gamma flux originates was calculated for different bulk
densities and total water contents with Equation (8) for our detector height (Figure 3).
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Equation (8). (b) Bulk density is 1.37 g cm−3 and the sensing depth for 86% (2 e-folding depth), 95%
(3 e-folding depth), and 99% of the detected signal is plotted for a range of total water values using
Equation (8).

Then, for sample i = 0, 1, 2, . . . , n − 1, the area under the cumulative contribution
percentage curve from the corresponding sampling partition is:

Ai =
∫ li+1

li
Φrel(h, t)dt (9)

To calculate the weight for a given sample, we first find the rectangular area that
represents a weight of one for a given interval, which is the product of the partition width
and the height, b, set equal to 1 (100% contribution to the detected gamma flux):

Bi = (li+1 − li)b (10)
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The constant, a, that conserves the weights is:

a =
1

1 −
∫ tmax

0 Φrel(h, t)dt
(11)

with the upper limit of t equal to tmax. The weight, w, for a given sample, i, is then:

w = a(B i − A i) (12)

The calculated weights for the gravimetric soil samples are given in Table 3, where
µa = 0.0064 m−1 and µs = 9.34 m−1. The depth-weighted average water content, θwt, for a
vertical profile with j = 1, 2, 3, . . . , n for n sampling intervals is calculated as:

θwt =
n

∑
j=1

wjθj, (13)

where wj is the weight for sampling interval j (Equation (12)) and θj is the gravimetric
water content value for sampling interval j. Note, for a more complete treatment of
support volume, Monte Carlo particle transport codes like MCNP or URANOS may be
used [50,54,63,73].

Table 3. Weights calculated for use in the depth-weighted average (Equation (13)). The lower bound
of the last weighting interval was set to 0.33 m; the theoretical depth from which 99% of the gamma-
ray signal is expected to originate for a homogenous source with infinite radius and fixed depth with
bulk density 1.37 g cm−3 and total water content of 0.27 g g−1.

Soil Sample Depth Interval (m) Weight

0–0.05 0.54
0.05–0.1 0.23

0.10–0.15 0.11
0.15–0.20 0.059
0.20–0.25 0.032
0.25–0.30 0.018

2.6. Auxiliary Data

Estimation of SWC requires additional site-specific information, including bulk density,
soil lattice water content, and soil organic carbon water. This study uses the values in
Table 4 from chemistry and bulk density analyses conducted at the site in 2023. Bulk density
was sampled three times in 2023 at the beginning, middle, and end of the growing season
using a core sampler with 2 in diameter and six depth intervals of 5 inches each at six
locations within the gSMS footprint. The bulk density profiles were depth-weighted and
averaged, and then the three bulk density samples were averaged to represent the mean
field conditions throughout the study (Table 5). A soil chemistry sample was collected by
aggregating soil from each profile location (total 100 gm) on 1 sampling date (15 May 2023).
The sample was analyzed for lattice water and SOC at Actlabs (Ontario Canada) following
the same methods used for CRNS [64].

Table 4. Site-specific lattice water and soil organic carbon values for the USNe-3 field from 2023.
Values are depth-weighted with weights found using the same method applied in Table 2.

Depth (cm) Lattice Water (g g−1) Soil Organic Carbon Water (g g−1)

0–10 0.049 0.005
10–20 0.049 0.004
20–30 0.054 0.004

Weighted 0.049 0.005
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Table 5. Site-specific bulk density values from for the USNe-3 field from 2023. Values are depth-
weighted with weights found using the same method applied in Table 3. NA values are inserted
where one or fewer bulk density samples were obtained for a given depth. Uncertainty values are the
standard error.

Depth (cm)
Bulk Density (g cm−3)

8 June 2023 9 August 2023 23 October 2023 Average

0–5 NA NA 1.18 ± 0.09 1.18 ± 0.09
5–10 NA 1.04 ± 0.08 1.42 ± 0.06 1.23 ± 0.07

10–15 1.36 ± 0.09 1.37 ± 0.07 1.52 ± 0.06 1.42 ± 0.07
15–20 1.44 ± 0.05 1.52 ± 0.05 1.49 ± 0.05 1.48 ± 0.05
20–25 1.46 ± 0.03 1.5 ± 0.09 1.41 ± 0.05 1.46 ± 0.06
25–30 1.37 ± 0.05 1.46 ± 0.05 1.51 ± 0.05 1.45 ± 0.05

Weighted: 1.26 ± 0.08

2.7. Calibration Equation

The calibration equation evaluated in this study is functionally identical to Equation (2)
from [63] and can be derived by assuming that wCal

G is equal to zero and the value used
for SCal

K is the count rate for 40K in dry soil. The notation has been changed in an attempt
at simplification and better alignment with [53,59]. The calibration equation without the
f (BWE) correction factor can also be derived by following Appendix C from [60], based on
the integration along an isoline of Equation (1). Note that the equation used in this study
describes total soil water content (instead of only pore water content) similar to CRNS
literature [64,74,75]. Total soil water content is defined as:

θtot = θg + θlattice + θSOC, (14)

where θg is the gravimetric pore water content, θlattice is the equivalent water in the soil
mineral structure, and θSOC is the soil organic carbon water equivalent (g g−1). The
weighted θlattice and θSOC values from Table 4 were added to the experimental depth-
weighted θg values to obtain the θtot observations for evaluation of the calibration function.
The calibration function is written as:

θtot =

(
I0· f (BWE)

It
− 1

)
(µ/ρ)s
(µ/ρ)w

, (15)

where It is the 40K specific activity at measurement time (Bq kg−1), I0 is the 40K specific
activity in dry soil, and f (BWE) = ΛK(BWE(t)) found by [63]. The energy-dependent mass
attenuation coefficients of soil and water are (µ/ρ)s and (µ/ρ)w, respectively (m2 kg−1).
For (µ/ρ)s, the value corresponding to SiO2 and the energy of the 40K peak, 1.46 MeV, is
used (0.005257 m2 kg−1). The value for (µ/ρ)w at 1.46 MeV is 0.005836 m2 kg−1 [76].

2.8. Evaluation of Calibration Equation

All data analyses were performed using R Statistical Software v4.0.2 [77]. Equation (15)
was fit to the data using f (BWE) = (−0.0120 ± 0.0001) ∗ BWE + 1.0 [63]. To fit parameters,
the sum of the absolute value of the residuals was minimized with Shuffled Complex
Evolution using the function, “sceua”, within the rtop package (v0.6.6) [78]. The goodness
of fit was determined by leave-one-out cross-validation, where the errors of the single
“left out” test predictions were used to calculate RMSE and adjusted R2 (Adj. R2). In
addition to goodness-of-fit statistics, the model was evaluated by plotting the residuals and
checking for remaining trends. When a statistically significant linear trend was found in
the residuals, an additional parameter, a, was added to the calibration equation so that the
updated model equation was:

θtot =

(
I0· f (BWE)

It
− 1

)
(µ/ρ)s
(µ/ρ)w

∗ a. (16)
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2.9. Recommended Sample Sizes for Parameter Calibration

The gravimetric sample data were used to determine the number of point samples required
to characterize the gSMS footprint. For each sampling day, the depth-weighted average of the
19 total SWC samples was considered the true SWC. Then, for profile sample sizes 3 to 16, the
profile sample was randomly selected 10,000 times without replacement. Each selected profile
sample was depth-weighted, averaged, and compared with the true water content. The average
RMSE and relative error was then calculated for each profile sample size for each sample day.

The gravimetric sample data were also used to evaluate the number of calibration days
required. For calibration sample sizes 3 to 27, the calibration sample was randomly selected
10,000 times without replacement. For each of the calibration days in the sample, 10 profiles
were randomly selected and depth-weighted. The SWC values from the calibration days
were then used to fit the model. The RMSE was calculated for the fitted model predictions
of all 27 SWC observations.

3. Results
3.1. Comparison of Observations with Calibration Equation

All observed soil moisture profiles from gravimetric sampling are provided in Figure 4a–c,
showing that, overall, a variety of heterogeneous soil moisture profiles were captured with
wetting fronts visible in some instances (e.g., 10 July 2023 and 24 July 2023). The relationship
between observed θtot and 40K specific activity follows the general behavior expected by
Equation (15). However, seven of the samples do not have uncertainty intervals that intersect
the 95% confidence interval for Equation (15) with the biomass correction omitted, and the
samples deviate from Equation (15) at both the dry and wet ends of the curve (Figure 5).

Inclusion of the biomass correction factor improves the RMSE from 0.052 g g−1 to
0.045 g g−1 and the Adj. R2 from 0.05 to 0.25. The increased estimation error by the first
calibration equation (Equation (15) with biomass correction included) at the dry and wet ends
of the SWC range is visible in the residuals (Figure 6a), which reveal a significant linear trend
with respect to predicted total water content and 40K specific activity (p-value < 0.01). The
average goodness-of-fit statistics and parameter values found from fitting the model with the
shuffled complex evolution algorithm and leave-one-out cross-validation are given in Table 6.
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Figure 4. (a) Soil moisture profiles from the September 2021 to March 2022 sampling campaigns. The
samples from the 7 depths at each location were interpolated to plot the 19 profiles for each sampling
day in gray. For each sampling day, the samples were also averaged by depth (black points) and
interpolated to find the average profile (black line), with horizontal error bars showing two standard
errors. (b) Soil moisture profiles for the April to October 2022 sampling campaigns. (c) Soil moisture
profiles for May to October 2023 sampling campaigns.

When the second calibration equation (Equation (16)) is fit to the data, the trend in
the residuals is removed (Figure 6b). The fitted values for I0 and a are given in Table 6,
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along with goodness-of-fit statistics that demonstrate improved RMSE and Adj. R2 values
compared to the first calibration equation.
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Figure 5. The experimental relationship between total water—the sum of gravimetric water content
(θg), lattice water ( θlattice), and soil organic carbon (θSOC)—and 40K specific activity compared to the
relationship predicted by the first calibration equation without the biomass correction (black line),
with the corresponding 95% confidence interval (gray band).
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Figure 6. (a) Residuals from Equation (15). The red line shows the significant linear trend (slope and
intercept p-values < 0.01). (b) Residuals from Equation (16) do not show a significant trend.

Predicted θtot from the second calibration equation usually describes the observed
θtot better than the first calibration equation when plotted as a time series (Figure 7).
Three samples in 2023 that were collected within four hours of precipitation events were
underpredicted by both the first and second calibration equations (Figure 7c).
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8). Calibration sample size analysis shows that RMSE decreases sharply when increasing 
from three to five calibrations (Figure 9). The 27 calibrations (19 profiles each) can be pre-
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using five calibrations (10 profiles each). The minimum RMSE, with 27 calibrations, is 
0.031 g g−1. 

Figure 7. (a) A time series summary of the 2021 sampling period. In the upper panel are the daily
40K data, the gravimetric sample data, and the predictions from the first and second calibration
equations (Equation (15) and Equation (16), respectively) with 95% confidence intervals calculated by
bootstrapping. The lower panel shows precipitation events and estimated biomass water equivalence
(BWE). Vertical dashed lines are the sampling dates. (b) A time series summary of the 2022 sampling
period. (c) A time series summary of the 2023 sampling period.

Table 6. Validation statistics and parameter values after fitting the first calibration equation
(Equation (15)) and the second calibration equation (Equation (16)) with the 27 samples using the
shuffled complex evolution algorithm (sceua function in the R package, rtop v0.6.6). The I0 and a
parameters were fit to the data (where applicable), and root mean squared error (RMSE) and R2

values were calculated using leave-one-out cross-validation. At the 40K peak energy of 1.46 MeV, the
value for (µ/ρ)s = 0.05257 cm2 g−1 and the value (µ/ρ)w = 0.05836 cm2 g−1.

Equation RMSE (g g−1) R2 Adj R2 I0(Bq kg−1) a

15 0.045 0.34 0.25 792 NA
16 0.033 0.66 0.59 897 0.63

3.2. Sample Size Analyses

The analysis of profile sample size shows that the true SWC in the gSMS footprint can
generally be estimated with a relative error less than 3% with only 10 profiles (Figure 8).
Calibration sample size analysis shows that RMSE decreases sharply when increasing from
three to five calibrations (Figure 9). The 27 calibrations (19 profiles each) can be predicted
with an RMSE of 0.038 g g−1 using three calibrations and an RMSE of 0.035 g g−1 using
five calibrations (10 profiles each). The minimum RMSE, with 27 calibrations, is 0.031 g g−1.
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Figure 8. Relative error in total water content (θtot) calculated from the number of sample profiles
indicated on the vertical axis compared to θtot calculated using all 19 sample profiles. The image
was generated by smoothing the sample relative error values shown by the black dots to a regularly
spaced grid and then interpolating via inverse distance weighting.
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Figure 9. Root mean squared error (RMSE) in predicting total water content for all 27 samples, using
Equation (16) calibrated with the number of calibrations on the horizontal axis and 10 randomly
selected profiles from each selected sample day.
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4. Discussion
4.1. Describing Field Gamma-Ray Behavior

From a statistical modeling perspective, the ratio, (µ/ρ)s/(µ/ρ)w, should be modified
in some way to eliminate a residual trend in our field data (Figure 6). The mass attenu-
ation adjustment parameter, a, fit with our experimental data tells us that the “effective”
ratio (µ/ρ)s/(µ/ρ)w is approximately 60% of the ratio (µ/ρ)s/(µ/ρ)w corresponding to
1.46 MeV and SiO2 material (Table 6). The need to modify the mass attenuation ratio was
not due to a difference in soil mineralogical composition compared to a pure SiO2 soil; the
difference in (µ/ρ)s for different soil mineralogical composition is less than 1% for energies
from 0.3 to 3 MeV [60]. Therefore, we consider other explanations for the reduced effective
(µ/ρ)s/(µ/ρ)w such as our gamma-ray analysis method. Because FSA considers the entire
40K spectrum, the (µ/ρ)s/(µ/ρ)w that should be used with 40K specific activity values
from FSA is potentially some weighted average of the (µ/ρ) values across all the energy
levels represented in the standard 40K spectrum. This concept could be further explored in
future work by using only the information from the 40K peak instead of the full spectrum.

Regardless of questions surrounding the mass attenuation parameters, our results
demonstrate the success of the biomass correction factor from [63] for maize, maize stover,
and soybean. The biomass correction factor markedly improved the goodness-of-fit statis-
tics and, when the biomass correction factor is fit to the experimental data along with I0
in the first calibration equation, the fitted value is within 0.002 of the 0.012 value given
by [63]. Given the high performance of the biomass correction approach, we conclude that
modeling vegetation as a layer of water above the soil surface is a sufficient method for
removing the influence of vegetation on the gSMS signal in maize and soybean at our site.

4.2. Method Limitations

SWC estimation with the gSMS is limited by the need for calibrated parameters
(I0 and a). The number of fitted parameters in the calibration equation determines the
number of calibration sampling campaigns required to fit those parameters. The current
suggestion for at least five calibration campaigns limits the method to dedicated research
contexts. Similarly, calibrating both the I0 and a will pose significant challenges to spatial
mapping of SWC with the gSMS. The site-specific nature of our study means that the
(µ/ρ)s/(µ/ρ)w and biomass water corrections should also be validated in other soil and
vegetation conditions. Future work should also investigate if the a parameter is consistent
across study sites or correlated to properties such as soil texture or underlying mineralogy.

Handling heterogeneity in the SWC profile and in the contribution of source material
at varying distances from the gSMS is also a point of limited understanding. Besides [57]
calculating the percent error expected from a heterogeneous soil water profile when assum-
ing a homogeneous profile, little research has explored the potential impact on gamma-ray
SWC estimates. An instance of SWC heterogeneity effects was the poor predictability of
samples near precipitation events and the slight negative impact they had on our model fit
when they were included in the calibration data set vs. when they were removed as outliers.
Both the characteristics of increased vertical and temporal variability were likely at play
near precipitation events. Similarly, the optimal method for sample weighting is currently
open to discussion and could be enhanced by applying the knowledge that contribution to
the detected gamma signal is a function of both distance to the gSMS and dynamic overall
density (bulk density and SWC) of the material. Achieving this would require Monte Carlo
simulation codes such as MCNP or URANOS for CRNS. Another limitation, particularly
in relation to precipitation events and utilizing Monte Carlo simulation, is the unknown
impact of neglecting the hydrogen pool associated with intercepted water and dew on
the canopy.

4.3. Favorable Characteristics

The unbiased RMSE value of 0.033 g g−1 (0.045 m3 m−3 for a bulk density of 1.37 g cm−3)
places the gSMS method in this study among other in situ and remote sensing SWC methods
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in accuracy (Table 1). Equation (16) is now feasible to use for dedicated research purposes
with row crops where the benefit of the gSMS information outweighs the cost of calibration
sampling. Because of the SWC estimation accuracy and improved description of gamma-
ray behavior in the field using Equation (16) compared to the theory-based Equation (15),
this study opens an avenue for measuring SWC at the novel subfield scale and provides
concrete motivation for further development of GRS for hydrological applications. Future
development is promising because technical challenges of gamma-ray sensing are resolving
with the availability of smaller detectors and software for processing gamma-ray spectra.
Additionally, the gSMS footprint is fairly well described by theory and Monte Carlo
simulations [53,54].

4.4. Recommendations for Stationary gSMS Operation

Calibration sampling for gravimetric water content is the crux of obtaining accurate
SWC estimates with the gSMS. Our results show that two parameters must be fit at each
site, which leads us to recommend five sampling campaigns for an error of 0.032 g g−1.
Additional sampling campaigns may reduce the unexpected error marginally. Equation
(16) best represents our current understanding of the relationship between gamma-ray
specific activity and SWC by preserving the known mass attenuation coefficient of SiO2
for a collimated beam and a “fudge factor” (i.e., additional parameter, a) to account for
an unexplained relationship between the residuals and 40K specific activity values from
FSA. The sampling size analysis in Section 3.2 provided a conservative value of 10 for the
number of locations that should be sampled to measure actual soil water content within the
gSMS footprint with a relative error less than 3%. We do not recommend a single or a few
point sensors such as a TDR sensor for calibration given the discrepancy in sensing volume
between point sensors and the gSMS and the high degree of variability in point data as
discussed in Sections 1.1 and 1.2. At each location in the sampling design, gravimetric
water content samples should be collected at five-centimeter intervals. The depth-weighting
approach used here is recommended and the weights given in Table 3 can be used; the R
code to calculate the weights for specific cases is provided on GitHub (see Supplementary
Materials). In addition to gravimetric sampling, BWE must be estimated to apply the
calibration equation in the presence of vegetation. We cannot comment on whether the
vegetation correction factor used here from [63] is descriptive of vegetation types beyond
maize and soybean, especially those whose biomass water may be distributed differently.
Proxies of BWE from remote sensing products (i.e., greenness, NDVI, and LAI) or crop
growth calendars will likely provide reasonable estimates [74]. Note that the internal water
content of row crop vegetation will vary greatly over the growing from approximately 90%
to around 20–25% at the time of harvest. Again, crop calendars and crop growth stages will
provide reasonable guesses.

4.5. Roadmap for Future Implementation

Some of the limitations in SWC measurement with gamma-ray spectroscopy may
be overcome by following the trajectory of CRNS research over the past decade, which
involves field validation, Monte Carlo simulation, and streamlining correction factors to
develop a usable calibration function. Although the CRNS method detects particles with
different production mechanisms and energy ranges, the attenuating power of hydrogen
is the basis for SWC estimation with the CRNS and gSMS alike. One crucial step is to
find methods to predict the unknown parameters in the calibration function and thereby
reduce the number of calibration campaigns required. For instance, a multi-site study could
explore whether there exists a relationship between I0 and a or between the calibration
parameters and any other known site-specific characteristics such as bulk density, soil type,
and vegetation type or water content. The CRNS community has completed a diverse array
of field studies to constrain the relationships between parameters and correction factors in
the CRNS calibration equation [33,79] and the same commitment to a broad scope of field
contexts is essential to future gSMS research.
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The CRNS community has also taken advantage of simulation methods, such as Monte
Carlo N-Particle Transport (MCNP) code and the Ultra Rapid Adaptable Neutron-Only
Simulation (URANOS), to answer a variety of questions about footprint characteristics and
sources of signal attenuation [73]. Topics explored in CRNS simulations that warrant study
in gamma-ray simulations as well include footprint size for different energy ranges of
detection [49,50,80], measurement capabilities in heterogenous landscapes [52,81], and per-
formance in the presence of factors such as air humidity and fractional snow cover [82,83].
Corrections for water content in different types of vegetation such as agricultural row crops,
forest, and grassland have also been advanced by Monte Carlo simulations [33,84,85].

Gamma-ray spectroscopy also has a history of using MCNP simulations to better
understand the spectra generated by various gamma-ray source compositions and config-
urations [86–90] and has already begun to follow in the footsteps of CRNS research. For
instance, ref. [63] used a Monte Carlo approach designed for assessing water content [54]
to find the vegetation water correction factor used in this study. Similarly, ref. [53] used
MCNP to predict gamma-ray spectra shape and intensity as a function of detector height
for UAV applications, which are made feasible by the small payload of the gSMS compared
to CRNS. Continuation of simulations and field studies can eventually enable accurate uni-
versal estimation of subfield-scale soil moisture through decreasing calibration labor and
correcting for factors including vegetation water, detector height, heterogenous landscapes,
and effective sensing depths.

5. Conclusions

Our analysis demonstrates the skill of the GRS method for estimating subfield SWC (a
scale that describes a critical level of SWC variability). We found that the I0 and a parameters
must be fit to the data to accurately estimate our observed SWC data (RMSE = 0.033 g g−1)
from 40K specific activity obtained from FSA. Biomass water was successfully accounted
for by a correction factor that treats biomass as a layer of water over the soil surface.
Further analysis to provide calibration recommendations found that the 27 observed SWC
samples could be predicted with an RMSE of 0.035 g g−1 using a calibration procedure
with only 10 profiles in the footprint and 5 calibrations. Future GRS research is tasked with
reducing the number of calibrations required and continuing field validation and Monte
Carlo simulation to actualize the full capabilities of GRS SWC estimation in a broad range
of vegetation contexts and in both ground and UAV-based applications.

This work represents the most robust study to date bridging the divide between
gamma-ray spectroscopy theory and field quantification of SWC. Up to this point, gamma-
ray measurements have been primarily employed in research to detect relative change in
SWC, specifically rain and irrigation events [91]. Quantification of SWC at the subfield
scale is paramount for collecting data with the appropriate spatial variability for the major
hydrological applications of our time, including flood forecasting, precision irrigation, and
drought and wildfire monitoring. The validation, advancements, and opportunities for
the gSMS method described in this study strongly support the future of hydrological and
climate monitoring.

Supplementary Materials: Supporting information can be downloaded at: https://github.com/
sophiambecker/gSMS-validation (accessed on 19 February 2024) including R code used to generate
Figures 4–9 and R code used to depth-weight sample data.
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