Nb2O5 Microcolumns for Ethanol Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Material Characterization
3.2. Gas Sensing
Materials | Methods | Temp. (°C) | Ethanol (ppm) | Resp. | Ref. |
---|---|---|---|---|---|
Au/SnO2 | Hydrothermal | 340 | 100 | 18.0 | [35] |
ZnO Nanowires | Oxidation | 240 | 100 | 5.0 | [36] |
NiO/ZnO | VLS | 400 | 50 | 6.7 | [37] |
NiO nanowires | VLS | 400 | 50 | 2.9 | [37] |
Nb2O5-TiO2 nanofibers | Electrospinning | 250 | 500 | 21.6 | [9] |
CuO-Fe2O3 hollow spheres | Template method | 380 | 500 | 17.5 | [38] |
Nb2O5 microcolumns | Hydrothermal | 500 | 10 | 2.51 | This Work |
3.3. Ethanol Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, T.-T.; Zhu, L.-Y.; Wu, X.-Y.; Miao, X.-Y.; Mao, L.-W.; Jin, X.-H.; Lu, H.-L. Hierarchical Nb2O5@ZnO Hetero-Branched Nanorods for Enhanced H2S Gas Sensing. Sens. Actuators B Chem. 2023, 374, 132806. [Google Scholar] [CrossRef]
- Mao, L.-W.; Zhu, L.-Y.; Tao Wu, T.; Xu, L.; Jin, X.-H.; Lu, H.-L. Excellent Long-Term Stable H2S Gas Sensor Based on Nb2O5/SnO2 Core-Shell Heterostructure Nanorods. Appl. Surf. Sci. 2022, 602, 154339. [Google Scholar] [CrossRef]
- Mirzaei, A.; Sun, G.-J.; Lee, J.K.; Lee, C.; Choi, S.; Kim, H.W. Hydrogen Sensing Properties and Mechanism of NiO-Nb2O5 Composite Nanoparticle-Based Electrical Gas Sensors. Ceram. Int. 2017, 43, 5247–5254. [Google Scholar] [CrossRef]
- Park, S.; Kheel, H.; Sun, G.-J.; Kim, H.W.; Ko, T.; Lee, C. Room-Temperature Hydrogen Gas Sensing Properties of the Networked Cr2O3-Functionalized Nb2O5 Nanostructured Sensor. Met. Mater. Int. 2016, 22, 730–736. [Google Scholar] [CrossRef]
- Yu, J.; Cheung, K.W.; Yan, W.H.; Li, Y.X.; Ho, D. High-Sensitivity Low-Power Tungsten Doped Niobium Oxide Nanorods Sensor for Nitrogen Dioxide Air Pollution Monitoring. Sens. Actuators B Chem. 2017, 238, 204–213. [Google Scholar] [CrossRef]
- Mahendraprabhu, K.; Elumalai, P. Stabilized Zirconia-Based Selective NO2 Sensor Using Sol-Gel Derived Nb2O5 Sensing-Electrode. Sens. Actuators B Chem. 2017, 238, 105–110. [Google Scholar] [CrossRef]
- Anggraini, S.A.; Plashnitsa, V.V.; Elumalai, P.; Breedon, M.; Miura, N. Stabilized Zirconia-Based Planar Sensor Using Coupled Oxide(+au) Electrodes for Highly Selective CO Detection. Sens. Actuators B Chem. 2011, 160, 1273–1281. [Google Scholar] [CrossRef]
- Li, C.; Kim, K.; Fuchigami, T.; Asaka, T.; Kakimoto, K.; Masuda, Y. Acetone Gas Sensor Based on Nb2O5 @SnO2 Hybrid Structure with High Selectivity and PPT-Level Sensitivity. Sens. Actuators B Chem. 2023, 393, 134144. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Lu, H.; Yan, C.; Chen, K.; Lu, H.; Gao, J.; Yang, Z.; Zhu, G.; Wang, C.; et al. Ethanol Sensing Properties and Reduced Sensor Resistance Using Porous Nb2O5-TiO2 n-n Junction Nanofibers. Sens. Actuators B Chem. 2019, 283, 602–612. [Google Scholar] [CrossRef]
- Li, S.; Pu, J.; Zhu, S.; Gui, Y. Co3O4@TiO2@Y2O3 Nanocomposites for a Highly Sensitive CO Gas Sensor and Quantitative Analysis. J. Hazard. Mater. 2022, 422, 126880. [Google Scholar] [CrossRef]
- Kumarage, G.W.; Comini, E. Low-Dimensional Nanostructures Based on Cobalt Oxide (Co3O4) in Chemical-Gas Sensing. Chemosensors 2021, 9, 197. [Google Scholar] [CrossRef]
- Roth, M.; Usemann, J.; Bisig, C.; Comte, P.; Czerwinski, J.; Mayer, A.C.R.; Beier, K.; Rothen-Rutishauser, B.; Latzin, P.; Müller, L. Effects of Gasoline and Ethanol-Gasoline Exhaust Exposure on Human Bronchial Epithelial and Natural Killer Cells in Vitro. Toxicol. Vitr. 2017, 45, 101–110. [Google Scholar] [CrossRef]
- Gai, L.-Y.; Lai, R.-P.; Dong, X.-H.; Wu, X.; Luan, Q.-T.; Wang, J.; Lin, H.-F.; Ding, W.-H.; Wu, G.-L.; Xie, W.-F. Recent Advances in Ethanol Gas Sensors Based on Metal Oxide Semiconductor Heterojunctions. Rare Met. 2022, 41, 1818–1842. [Google Scholar] [CrossRef]
- Moumen, A.; Kumarage, G.C.; Comini, E. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors 2022, 22, 1359. [Google Scholar] [CrossRef]
- Ponzoni, A. Morphological Effects in SnO2 Chemiresistors for Ethanol Detection: A Review in Terms of Central Performances and Outliers. Sensors 2020, 21, 29. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D.; Yue, C.; Liu, Z.; Mu, Y.; Yang, Z.; Dastan, D.; Zhang, X.; Yin, X.-T.; Ma, X. High Sensitivity and Surface Mechanism of Mofs-Derived Metal Oxide Co3O4-SnO2 Hollow Spheres to Ethanol. J. Alloy. Compd. 2023, 962, 171182. [Google Scholar] [CrossRef]
- Dharmalingam, G.; Sivasubramaniam, R.; Parthiban, S. Quantification of Ethanol by Metal-Oxide-Based Resistive Sensors: A Review. J. Electron. Mater. 2020, 49, 3009–3024. [Google Scholar] [CrossRef]
- Kumarage, G.W.; Hakkoum, H.; Comini, E. Recent Advancements in TiO2 Nanostructures: Sustainable Synthesis and Gas Sensing. Nanomaterials 2023, 13, 1424. [Google Scholar] [CrossRef] [PubMed]
- Jamnani, S.R.; Moghaddam, H.M.; Leonardi, S.G.; Neri, G.; Ferlazzo, A. Vocs Sensing Properties of Samarium Oxide Nanorods. Ceram. Int. 2024, 50, 403–411. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Jin, X.; Sun, G.; Cao, J.; Wang, Y. The Effects of CO Doping on the Gas Sensing Performance of In2O3 Porous Nanospheres. Sens. Actuators B Chem. 2024, 403, 135155. [Google Scholar] [CrossRef]
- Mozalev, A.; Bendova, M.; Vazquez, R.M.; Pytlicek, Z.; Llobet, E.; Hubalek, J. Formation and Gas-Sensing Properties of a Porous-Alumina-Assisted 3-D Niobium-Oxide Nanofilm. Sens. Actuators B Chem. 2016, 229, 587–598. [Google Scholar] [CrossRef]
- Khatoon, R.; Rauf, S.; Haq, M.U.; Attique, S.; Din, S.U.; Ali, N.; Guo, Y.; Chen, H.; Tian, Y.; Lu, J. Design of Highly Sensitive and Selective Ethanol Sensor Based on α-FE2O3/Nb2O5 Heterostructure. Nanotechnology 2021, 32, 195503. [Google Scholar] [CrossRef]
- Lombardo, L.; Grassini, S.; Parvis, M.; Donato, N.; Gullino, A. Ethanol Breath Measuring System. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020. [Google Scholar]
- Park, S.; Kim, S.; Park, S.; Hyun, S.-K.; Lee, W.I.; Lee, C. Enhanced Ethanol Sensing Performances of Multiple Networked Nb2O5 Nanorod Sensors Functionalized with Pd and Au Nanoparticles. Nano 2014, 9, 1450098. [Google Scholar] [CrossRef]
- Reddy, P.S.; Reddy, K.S.; Reddy, B.A.; Manasa, M.V.; Devi, G.S.; Rao, G.N. Gas Sensing Characteristics of ZnO: Nb2O5 Nanocomposite towards Hydrogen Gas. J. Adv. Phys. 2017, 6, 418–421. [Google Scholar] [CrossRef]
- Devi, G.S.; Reddy, P.S.; Ramya, K. Sol-Gel Derived Zno: Nb2O5 Nanocomposite as Selective Hydrogen (H2) Gas Sensor. Mater. Today Proc. 2016, 3, 224–229. [Google Scholar] [CrossRef]
- Komurcu, H.A.; Ataser, T.; Sonmez, N.A.; Asar, T.; Ozcelik, S. Production of Hydrogen Gas Sensors Based on Sol–Gel Spin-Coated Nb2O5 Thin Films. J. Mater. Sci. Mater. Electron. 2023, 34, 922. [Google Scholar] [CrossRef]
- Zhu, H.; Zheng, Z.; Gao, X.; Huang, Y.; Yan, Z.; Zou, J.; Yin, H.; Zou, Q.; Kable, S.H.; Zhao, J.; et al. Structural Evolution in a Hydrothermal Reaction between Nb2O5 and Naoh Solution: From Nb2O5 Grains to Microporous Na2Nb2O6·2/3H2O Fibers and NaNbO3Cubes. J. Am. Chem. Soc. 2006, 128, 2373–2384. [Google Scholar] [CrossRef] [PubMed]
- Kumarage, G.W.C.; Comini, E. Conductometric Gas Sensors. Encycl. Mater. Electron. 2023, 1, 564–580. [Google Scholar]
- Herval, L.K.S.; von Dreifus, D.; Rabelo, A.C.; Rodrigues, A.D.; Pereira, E.C.; Gobato, Y.G.; de Oliveira, A.J.A.; de Godoy, M.P.F. The Role of Defects on the Structural and Magnetic Properties of Nb2O5. J. Alloys Compd. 2015, 653, 358–362. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.; Ma, M.; Xue, Q. Effect of Ethanol Gas on the Electrical Properties of ZnO Nanorods. Phys. E Low-Dimens. Syst. Nanostruct. 2011, 43, 1056–1060. [Google Scholar] [CrossRef]
- Moumen, A.; Zappa, D.; Poli, N.; Comini, E. Catalyst—Assisted Vapor Liquid Solid Growth of α-Bi2O3 Nanowires for Acetone and Ethanol Detection. Sens. Actuators B Chem. 2021, 346, 130432. [Google Scholar] [CrossRef]
- Banerjee, N.; Roy, S.; Sarkar, C.K.; Bhattacharyya, P. Effect of Humidity on Ethanol Sensing Performance of PD Sensitized ZnO Nanorod Based Sensors. J. Surf. Interfaces Mater. 2014, 2, 154–160. [Google Scholar] [CrossRef]
- Liu, C.; Lu, H.; Zhang, J.; Yang, Z.; Zhu, G.; Yin, F.; Gao, J.; Chen, C.; Xin, X. Abnormal P-Type Sensing Response of TiO2 Nanosheets with Exposed {001} Facets. J. Alloys Compd. 2017, 705, 112–117. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Gong, H.; Ju, D.; Cao, B. Au Nanoparticle-Functionalized 3D SnO2 Microstructures for High Performance Gas Sensor. Sens. Actuators B Chem. 2016, 226, 266–272. [Google Scholar] [CrossRef]
- Hongsith, N.; Viriyaworasakul, C.; Mangkorntong, P.; Mangkorntong, N.; Choopun, S. Ethanol Sensor Based on ZnO and Au-Doped ZnO Nanowires. Ceram. Int. 2008, 34, 823–826. [Google Scholar] [CrossRef]
- Kaur, N.; Zappa, D.; Ferroni, M.; Poli, N.; Campanini, M.; Negrea, R.; Comini, E. Branch-like NiO/ZnO Heterostructures for VOC Sensing. Sens. Actuators B Chem. 2018, 262, 477–485. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, L.; Wang, Y.; Zhang, H.; Wang, Y.; Hong, D.; Qv, Y.; Wang, S. Construction and Enhanced Gas Sensing Performances of Cuo-Modified α-Fe2O3 Hybrid Hollow Spheres. Sens. Actuators B Chem. 2013, 177, 570–576. [Google Scholar] [CrossRef]
- Choopun, S.; Tubtimtae, A.; Santhaveesuk, T.; Nilphai, S.; Wongrat, E.; Hongsith, N. Zinc Oxide Nanostructures for Applications as Ethanol Sensors and Dye-Sensitized Solar Cells. Appl. Surf. Sci. 2009, 256, 998–1002. [Google Scholar] [CrossRef]
- Liao, J.; Yang, F.; Wang, C.-Z.; Lin, S. The Crystal Facet-Dependent Electrochemical Performance of TiO2 Nanocrystals for Heavy Metal Detection: Theoretical Prediction and Experimental Proof. Sens. Actuators B Chem. 2018, 271, 195–202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumarage, G.W.C.; Panamaldeniya, S.A.; Maraloiu, V.A.; Dassanayake, B.S.; Gunawardhana, N.; Comini, E. Nb2O5 Microcolumns for Ethanol Sensing. Sensors 2024, 24, 1851. https://doi.org/10.3390/s24061851
Kumarage GWC, Panamaldeniya SA, Maraloiu VA, Dassanayake BS, Gunawardhana N, Comini E. Nb2O5 Microcolumns for Ethanol Sensing. Sensors. 2024; 24(6):1851. https://doi.org/10.3390/s24061851
Chicago/Turabian StyleKumarage, Gayan W. C., Shasika A. Panamaldeniya, Valentin A. Maraloiu, Buddhika S. Dassanayake, Nanda Gunawardhana, and Elisabetta Comini. 2024. "Nb2O5 Microcolumns for Ethanol Sensing" Sensors 24, no. 6: 1851. https://doi.org/10.3390/s24061851
APA StyleKumarage, G. W. C., Panamaldeniya, S. A., Maraloiu, V. A., Dassanayake, B. S., Gunawardhana, N., & Comini, E. (2024). Nb2O5 Microcolumns for Ethanol Sensing. Sensors, 24(6), 1851. https://doi.org/10.3390/s24061851