On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the OREKA Platform
2.2. Experimental Protocol
2.3. Data Processing
2.4. Inertial Compensation
- are the forces measured by the sensors.
- The weight of the platform.
- The weight of the user.
- Distance in x axis from O to the sensor Ai.
- Distance in y axis from O to the sensor Ai.
2.5. CoP Indicators
2.6. Data Analysis
3. Results and Discussion
3.1. Characterization of x and y Distances
3.2. Characterization of x and y Velocities
3.3. The 95% Prediction Ellipse Area and Statokinesigram
3.4. Poincaré Plot
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Della Volpe, R.; Popa, T.; Ginanneschi, F.; Spidalieri, R.; Mazzocchio, R.; Rossi, A. Changes in coordination of postural control during dynamic stance in chronic low back pain patients. Gait Posture 2006, 24, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Massion, J. Movement, posture and equilibrium: Interaction and coordination. Prog. Neurobiol. 1992, 38, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Winter, D. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Şimşek, T.T.; Şimşek, İ.E. Balance and postural control. In Comparative Kinesiology of the Human Body; Elsevier: Amsterdam, The Netherlands, 2020; pp. 467–475. [Google Scholar] [CrossRef]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35 (Suppl. S2), ii37–ii41. [Google Scholar] [CrossRef]
- Purroy, F.; Montalà, N. Epidemiología del ictus en la última década: Revisión sistemática. Rev. Neurol. 2021, 73, 321. [Google Scholar] [CrossRef]
- Tyson, S.F.; Hanley, M.; Chillala, J.; Selley, A.; Tallis, R.C. Balance Disability After Stroke. Phys. Ther. 2006, 86, 30–38. [Google Scholar] [CrossRef]
- Lanska, D.J.; Goetz, C.G. Romberg’s sign: Development, adoption, and adaptation in the 19th century. Neurology 2000, 55, 1201–1206. [Google Scholar] [CrossRef]
- Chen, B.; Liu, P.; Xiao, F.; Liu, Z.; Wang, Y. Review of the Upright Balance Assessment Based on the Force Plate. Int. J. Environ. Res. Public Health 2021, 18, 2696. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health 1992, 83 (Suppl. S2), S7–S11. [Google Scholar]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Tinetti, M.E. Performance-Oriented Assessment of Mobility Problems in Elderly Patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Scura, D.; Munakomi, S. Tinetti Gait and Balance Test. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The Timed ‘Up & Go’: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Collen, F.M.; Wade, D.T.; Robb, G.F.; Bradshaw, C.M. The Rivermead Mobility Index: A further development of the Rivermead Motor Assessment. Int. Disabil. Stud. 1991, 13, 50–54. [Google Scholar] [CrossRef]
- García, R.B.; Corresa, S.P.; Bertomeu, J.M.B.; Suárez-Varela, M.M.M. Posturografía estática con pruebas dinámicas. Utilidad de los parámetros biomecánicos en la valoración del paciente vestibular. Acta Otorrinolaringol. Esp. 2012, 63, 332–338. [Google Scholar] [CrossRef]
- Baratto, L.; Morasso, P.G.; Re, C.; Spada, G. A New Look at Posturographic Analysis in the Clinical Context: Sway-Density versus Other Parameterization Techniques. Mot. Control 2002, 6, 246–270. [Google Scholar] [CrossRef]
- Błaszczyk, J.; Beck, M. Posturographic Standards for Optimal Control of Human Standing Posture. J. Hum. Kinet. 2023, 86, 7–15. [Google Scholar] [CrossRef]
- Chaudhry, H.; Bukiet, B.; Ji, Z.; Findley, T. Measurement of balance in computer posturography: Comparison of methods—A brief review. J. Bodyw. Mov. Ther. 2011, 15, 82–91. [Google Scholar] [CrossRef] [PubMed]
- de Moya, M.F.P.; Bertomeu, J.M.B.; Broseta, M.J.V. Evaluación y rehabilitación del equilibrio mediante posturografía. Rehabilitación 2005, 39, 315–323. [Google Scholar] [CrossRef]
- Duarte, M.; Freitas, S.M. Revision of posturography based on force plate for balance evaluation. Braz. J. Phys. Ther. 2010, 14, 183–192. [Google Scholar] [CrossRef]
- Emara, A.; Mahmoud, S.; Emira, M. Effect of body weight on static and dynamic posturography. Egypt. J. Otolaryngol. 2020, 36, 12. [Google Scholar] [CrossRef]
- Michalak, K.P.; Przekoracka, K. A new approach to body balance analysis based on the eight-phase posturographic signal decomposition. Biomed. Signal Process Control 2022, 77, 103807. [Google Scholar] [CrossRef]
- Devetak, G.F.; Bohrer, R.C.D.; Rodacki, A.L.F.; Manffra, E.F. Center of mass in analysis of dynamic stability during gait following stroke: A systematic review. Gait Posture 2019, 72, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Jancová, J. Measuring the balance control system–Review. Acta Medica 2008, 51, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Browne, J.; O’Hare, N. Review of the Different Methods for Assessing Standing Balance. Physiotherapy 2001, 87, 489–495. [Google Scholar] [CrossRef]
- Johansson, R.; Magnusson, M. Human postural dynamics. Crit. Rev. Biomed. Eng. 1991, 18, 413–437. [Google Scholar] [PubMed]
- Rizzato, A.; Paoli, A.; Andretta, M.; Vidorin, F.; Marcolin, G. Are Static and Dynamic Postural Balance Assessments Two Sides of the Same Coin? A Cross-Sectional Study in the Older Adults. Front. Physiol. 2021, 12, 681370. [Google Scholar] [CrossRef]
- Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef]
- Morasso, P.; Casadio, M.; Mohan, V.; Rea, F.; Zenzeri, J. Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics. Front. Hum. Neurosci. 2015, 9, 83. [Google Scholar] [CrossRef]
- Bargiotas, I.; Audiffren, J.; Vayatis, N.; Vidal, P.P.; Buffat, S.; Yelnik, A.P.; Ricard, D. On the importance of local dynamics in statokinesigram: A multivariate approach for postural control evaluation in elderly. PLoS ONE 2018, 13, e0192868. [Google Scholar] [CrossRef]
- Mandalidis, D.G.; Karagiannakis, D.N. A comprehensive method for assessing postural control during dynamic balance testing. MethodsX 2020, 7, 100964. [Google Scholar] [CrossRef]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, 15067. [Google Scholar] [CrossRef]
- Schubert, P.; Kirchner, M.; Schmidtbleicher, D.; Haas, C.T. About the structure of posturography: Sampling duration, parametrization, focus of attention (part I). J. Biomed. Sci. Eng. 2012, 5, 496–507. [Google Scholar] [CrossRef]
- Rougier, P. Visual feedback induces opposite effects on elementary centre of gravity and centre of pressure minus centre of gravity motions in undisturbed upright stance. Clin. Biomech. 2003, 18, 341–349. [Google Scholar] [CrossRef]
- Charles, P.; Javier, C.S.; Mikel, D.S.; Arana, U.; Erik, M.M.; Javier, C.G.F.; Ignacio, T.E.P.; Mar, G.O.M.; Héctor, L.M. System for Diagnosing Balance, and Sensor-Equipped Platform of Said System. Patent WO 2023/052670, 25 July 2023. [Google Scholar]
- Ruhe, A.; Fejer, R.; Walker, B. The test–retest reliability of centre of pressure measures in bipedal static task conditions—A systematic review of the literature. Gait Posture 2010, 32, 436–445. [Google Scholar] [CrossRef]
- Crenna, F.; Rossi, G.B.; Berardengo, M. Filtering Biomechanical Signals in Movement Analysis. Sensors 2021, 21, 4580. [Google Scholar] [CrossRef] [PubMed]
- Koltermann, J.J.; Floessel, P.; Hammerschmidt, F.; Disch, A.C. The Influence of Anthropometric Variables and Filtering Frequency on Center of Pressure Data. Sensors 2023, 23, 5105. [Google Scholar] [CrossRef] [PubMed]
- Schubert, P.; Kirchner, M. Ellipse area calculations and their applicability in posturography. Gait Posture 2014, 39, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, G.; Zhang, R.; Lin, J.; Chen, Y.; Jin, X.; Ning, G. Measuring the Local and Global Variabilities in Body Sway by Nonlinear Poincaré Technology; Measuring the Local and Global Variabilities in Body Sway by Nonlinear Poincaré Technology. IEEE Trans. Instrum. Meas. 2019, 68, 4817–4824. [Google Scholar] [CrossRef]
- Bolaños, J.D.; Valencia, J.F.; Vallverdú, M.; Valencia, D.F.; Borrat, X.; Garnbús, P.L. Selección del tiempo de retardo en el gráfico de Poincaré: Medición de los niveles de sedación y analgesia con señales EEG. Ingeniare Rev. Chil. Ing. 2021, 29, 27–40. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of participants (n) | 28 |
Age (years) | 37.5 ± 17.86 |
Mass (kg) | 71.4 ± 12.10 |
Height (m) | 1.72 ± 0.09 |
2 | 10 | 20 | |
---|---|---|---|
E1 | E2 | E3 | |
E4 | E5 | E6 | |
E7 | E8 | E9 |
Indices | Definition | |
---|---|---|
ML | AP | |
Mean distance | ||
Mean velocity | ||
95% PEA | ; | |
Poincaré diagram | |
CoP Direction | Feedback | Amplitude | |||
---|---|---|---|---|---|
2 | 10 | 20 | |||
w | 0.29 ± 0.16 | 0.40 ± 0.15 | 0.52 ± 0.17 | ||
0.31 ± 0.14 | 0.39 ± 0.17 | 0.49 ± 0.22 | |||
1.41 ± 0.81 | 1.83 ± 1.47 | 2.20 ± 1.15 | |||
w/o | 0.25 ± 0.12 | 0.32 ± 0.13 | 0.42 ± 0.1 | ||
0.28 ± 0.09 | 0.35 ± 0.12 | 0.41 ± 0.15 | |||
1.36 ± 0.62 | 1.35 ± 0.83 | 1.55 ± 0.64 | |||
w | 1.01 ± 0.41 | 1.07 ± 0.42 | 1.42 ± 0.59 | ||
1.30 ± 0.66 | 1.19 ± 0.52 | 1.42 ± 0.61 | |||
0.69 ± 0.19 | 0.76 ± 0.28 | 0.79 ± 0.27 | |||
w/o | 0.91 ± 0.55 | 0.91 ± 0.37 | 1.13 ± 0.40 | ||
1.27 ± 0.68 | 0.96 ± 0.44 | 1.20 ± 0.47 | |||
0.55 ± 0.14 | 0.66 ± 0.17 | 0.70 ± 0.14 |
CoP Direction | Amplitude (°) | ||||||
---|---|---|---|---|---|---|---|
2 | 10 | 20 | |||||
Increase | p Value | Increase | p Value | Increase | p Value | ||
16.00% | 0.3881 | 25.00% | 0.0345 | 23.81% | 0.0186 | ||
10.71% | 0.2830 | 11.43% | 0.2846 | 19.51% | 0.1323 | ||
3.68% | 0.7902 | 35.56% | 0.1447 | 41.94% | 0.0110 | ||
10.99% | 0.4341 | 17.58% | 0.1278 | 25.66% | 0.0301 | ||
2.36% | 0.8365 | 23.96% | 0.0891 | 18.33% | 0.1301 | ||
25.45% | 0.0016 | 15.00% | 0.0884 | 12.86% | 0.1196 |
CoP Direction | Feedback | Amplitude | |||
---|---|---|---|---|---|
2 | 10 | 20 | |||
w | 0.83 ± 0.34 | 1.75 ± 0.71 | 2.76 ± 1.16 | ||
0.94 ± 0.46 | 1.65 ± 0.79 | 2.03 ± 0.86 | |||
3.63 ± 1.67 | 8.10 ± 4.54 | 13.31 ± 6.83 | |||
w/o | 0.70 ± 0.24 | 1.36 ± 0.52 | 2.17 ± 0.91 | ||
0.87 ± 0.43 | 1.40 ± 0.58 | 2.01 ± 0.69 | |||
2.90 ± 0.82 | 6.03 ± 2.54 | 9.55 ± 4.15 | |||
w | 2.75 ± 1.22 | 5.05 ± 1.92 | 8.81 ± 3.56 | ||
2.40 ± 0.92 | 4.59 ± 1.70 | 7.17 ± 2.74 | |||
1.32 ± 0.52 | 2.68 ± 1.57 | 3.45 ± 2.04 | |||
w/o | 2.07 ± 0.73 | 4.07 ± 1.50 | 6.79 ± 2.40 | ||
2.39 ± 0.80 | 4.03 ± 1.55 | 6.10 ± 2.45 | |||
1.23 ± 0.29 | 2.16 ± 0.53 | 2.85 ± 0.88 |
CoP Position | Amplitude (°) | ||||||
---|---|---|---|---|---|---|---|
2 | 10 | 20 | |||||
Increase | p Value | Increase | p Value | Increase | p Value | ||
18.57% | 0.0147 | 28.68% | 0.0234 | 27.19% | 0.0390 | ||
08.04% | 0.5525 | 17.85% | 0.1757 | 00.99% | 0.2065 | ||
25.17% | 0.0417 | 34.33% | 0.0393 | 39.37% | 0.0159 | ||
32.85% | 0.0041 | 24.08% | 0.0371 | 29.75% | 0.0160 | ||
00.42% | 0.9401 | 13.89% | 0.2105 | 17.54% | 0.1272 | ||
07.32% | 0.4196 | 24.07% | 0.1036 | 21.05% | 0.1596 |
Feedback | Amplitude | |||
---|---|---|---|---|
2 | 10 | 20 | ||
w | 7.69 ± 5.32 | 13.43 ± 7.22 | 23.67 ± 14.92 | |
11.26 ± 7.60 | 14.88 ± 10.55 | 21.75 ± 16.54 | ||
25.27 ± 12.22 | 41.13 ± 46.02 | 48.39 ± 31.10 | ||
w/o | 7.30 ± 8.06 | 9.15 ± 5.85 | 14.26 ± 7.41 | |
9.66 ± 5.61 | 11.06 ± 7.82 | 16.06 ± 10.18 | ||
19.45 ± 7.99 | 27.2 ± 20.86 | 33.47 ± 20.33 |
Amplitude (°) | ||||||
---|---|---|---|---|---|---|
2 | 10 | 20 | ||||
Increase | p Value | Increase | p Value | Increase | p Value | |
5.09% | 0.8311 | 31.87% | 0.0182 | 39.75% | 0.0042 | |
14.20% | 0.3743 | 25.67% | 0.1295 | 26.13% | 0.1275 | |
23.01% | 0.0397 | 33.87% | 0.1504 | 30.82% | 0.0383 |
PoincaréAxis | Feedback | Amplitude | |||
---|---|---|---|---|---|
2 | 10 | 20 | |||
w | 0.05 ± 0.02 | 0.08 ± 0.03 | 0.13 ± 0.05 | ||
0.04 ± 0.01 | 0.08 ± 0.03 | 0.11 ± 0.04 | |||
0.06 ± 0.03 | 0.13 ± 0.09 | 0.20 ± 0.12 | |||
w/o | 0.03 ± 0.01 | 0.07 ± 0.02 | 0.10 ± 0.03 | ||
0.04 ± 0.01 | 0.06 ± 0.02 | 0.10 ± 0.04 | |||
0.05 ± 0.02 | 0.09 ± 0.04 | 0.14 ± 0.07 | |||
w | 0.97 ± 0.35 | 1.04 ± 0.32 | 1.27 ± 0.41 | ||
1.11 ± 0.44 | 1.20 ± 0.43 | 1.33 ± 0.50 | |||
1.28 ± 0.60 | 1.59 ± 0.79 | 1.86 ± 0.86 | |||
w/o | 0.81 ± 0.42 | 0.89 ± 0.31 | 1.04 ± 0.33 | ||
0.93 ± 0.37 | 0.94 ± 0.37 | 1.13 ± 0.35 | |||
1.24 ± 0.48 | 1.24 ± 0.62 | 1.42 ± 0.55 |
Poincare Axis | Amplitude (°) | ||||||
---|---|---|---|---|---|---|---|
2 | 10 | 20 | |||||
Increase | p Value | Increase | p Value | Increase | p Value | ||
66.67% | 0.0103 | 14.29% | 0.0210 | 30.00% | 0.0265 | ||
0.00% | 0.8681 | 33.33% | 0.1600 | 10.00% | 0.1601 | ||
20.00% | 0.0369 | 44.44% | 0.0348 | 42.86% | 0.0165 | ||
19.75% | 0.3627 | 16.85% | 0.0270 | 22.12% | 0.0106 | ||
19.35% | 0.3632 | 27.66% | 0.3022 | 17.70% | 0.1199 | ||
03.23% | 0.7538 | 28.23% | 0.1255 | 30.99% | 0.0125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela, R.; Corral, J.; Diez, M.; Campa, F.J.; Herrero, S.; Macho, E.; Pinto, C. On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations. Sensors 2024, 24, 1588. https://doi.org/10.3390/s24051588
Valenzuela R, Corral J, Diez M, Campa FJ, Herrero S, Macho E, Pinto C. On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations. Sensors. 2024; 24(5):1588. https://doi.org/10.3390/s24051588
Chicago/Turabian StyleValenzuela, Ruben, Javier Corral, Mikel Diez, Francisco J. Campa, Saioa Herrero, Erik Macho, and Charles Pinto. 2024. "On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations" Sensors 24, no. 5: 1588. https://doi.org/10.3390/s24051588
APA StyleValenzuela, R., Corral, J., Diez, M., Campa, F. J., Herrero, S., Macho, E., & Pinto, C. (2024). On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations. Sensors, 24(5), 1588. https://doi.org/10.3390/s24051588