On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the OREKA Platform
2.2. Experimental Protocol
2.3. Data Processing
2.4. Inertial Compensation
- are the forces measured by the sensors.
- The weight of the platform.
- The weight of the user.
- Distance in x axis from O to the sensor Ai.
- Distance in y axis from O to the sensor Ai.
2.5. CoP Indicators
2.6. Data Analysis
3. Results and Discussion
3.1. Characterization of x and y Distances
3.2. Characterization of x and y Velocities
3.3. The 95% Prediction Ellipse Area and Statokinesigram
3.4. Poincaré Plot
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Della Volpe, R.; Popa, T.; Ginanneschi, F.; Spidalieri, R.; Mazzocchio, R.; Rossi, A. Changes in coordination of postural control during dynamic stance in chronic low back pain patients. Gait Posture 2006, 24, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Massion, J. Movement, posture and equilibrium: Interaction and coordination. Prog. Neurobiol. 1992, 38, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Winter, D. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Şimşek, T.T.; Şimşek, İ.E. Balance and postural control. In Comparative Kinesiology of the Human Body; Elsevier: Amsterdam, The Netherlands, 2020; pp. 467–475. [Google Scholar] [CrossRef]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35 (Suppl. S2), ii37–ii41. [Google Scholar] [CrossRef]
- Purroy, F.; Montalà, N. Epidemiología del ictus en la última década: Revisión sistemática. Rev. Neurol. 2021, 73, 321. [Google Scholar] [CrossRef]
- Tyson, S.F.; Hanley, M.; Chillala, J.; Selley, A.; Tallis, R.C. Balance Disability After Stroke. Phys. Ther. 2006, 86, 30–38. [Google Scholar] [CrossRef]
- Lanska, D.J.; Goetz, C.G. Romberg’s sign: Development, adoption, and adaptation in the 19th century. Neurology 2000, 55, 1201–1206. [Google Scholar] [CrossRef]
- Chen, B.; Liu, P.; Xiao, F.; Liu, Z.; Wang, Y. Review of the Upright Balance Assessment Based on the Force Plate. Int. J. Environ. Res. Public Health 2021, 18, 2696. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health 1992, 83 (Suppl. S2), S7–S11. [Google Scholar]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Tinetti, M.E. Performance-Oriented Assessment of Mobility Problems in Elderly Patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Scura, D.; Munakomi, S. Tinetti Gait and Balance Test. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The Timed ‘Up & Go’: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Collen, F.M.; Wade, D.T.; Robb, G.F.; Bradshaw, C.M. The Rivermead Mobility Index: A further development of the Rivermead Motor Assessment. Int. Disabil. Stud. 1991, 13, 50–54. [Google Scholar] [CrossRef]
- García, R.B.; Corresa, S.P.; Bertomeu, J.M.B.; Suárez-Varela, M.M.M. Posturografía estática con pruebas dinámicas. Utilidad de los parámetros biomecánicos en la valoración del paciente vestibular. Acta Otorrinolaringol. Esp. 2012, 63, 332–338. [Google Scholar] [CrossRef]
- Baratto, L.; Morasso, P.G.; Re, C.; Spada, G. A New Look at Posturographic Analysis in the Clinical Context: Sway-Density versus Other Parameterization Techniques. Mot. Control 2002, 6, 246–270. [Google Scholar] [CrossRef]
- Błaszczyk, J.; Beck, M. Posturographic Standards for Optimal Control of Human Standing Posture. J. Hum. Kinet. 2023, 86, 7–15. [Google Scholar] [CrossRef]
- Chaudhry, H.; Bukiet, B.; Ji, Z.; Findley, T. Measurement of balance in computer posturography: Comparison of methods—A brief review. J. Bodyw. Mov. Ther. 2011, 15, 82–91. [Google Scholar] [CrossRef] [PubMed]
- de Moya, M.F.P.; Bertomeu, J.M.B.; Broseta, M.J.V. Evaluación y rehabilitación del equilibrio mediante posturografía. Rehabilitación 2005, 39, 315–323. [Google Scholar] [CrossRef]
- Duarte, M.; Freitas, S.M. Revision of posturography based on force plate for balance evaluation. Braz. J. Phys. Ther. 2010, 14, 183–192. [Google Scholar] [CrossRef]
- Emara, A.; Mahmoud, S.; Emira, M. Effect of body weight on static and dynamic posturography. Egypt. J. Otolaryngol. 2020, 36, 12. [Google Scholar] [CrossRef]
- Michalak, K.P.; Przekoracka, K. A new approach to body balance analysis based on the eight-phase posturographic signal decomposition. Biomed. Signal Process Control 2022, 77, 103807. [Google Scholar] [CrossRef]
- Devetak, G.F.; Bohrer, R.C.D.; Rodacki, A.L.F.; Manffra, E.F. Center of mass in analysis of dynamic stability during gait following stroke: A systematic review. Gait Posture 2019, 72, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Jancová, J. Measuring the balance control system–Review. Acta Medica 2008, 51, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Browne, J.; O’Hare, N. Review of the Different Methods for Assessing Standing Balance. Physiotherapy 2001, 87, 489–495. [Google Scholar] [CrossRef]
- Johansson, R.; Magnusson, M. Human postural dynamics. Crit. Rev. Biomed. Eng. 1991, 18, 413–437. [Google Scholar] [PubMed]
- Rizzato, A.; Paoli, A.; Andretta, M.; Vidorin, F.; Marcolin, G. Are Static and Dynamic Postural Balance Assessments Two Sides of the Same Coin? A Cross-Sectional Study in the Older Adults. Front. Physiol. 2021, 12, 681370. [Google Scholar] [CrossRef]
- Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef]
- Morasso, P.; Casadio, M.; Mohan, V.; Rea, F.; Zenzeri, J. Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics. Front. Hum. Neurosci. 2015, 9, 83. [Google Scholar] [CrossRef]
- Bargiotas, I.; Audiffren, J.; Vayatis, N.; Vidal, P.P.; Buffat, S.; Yelnik, A.P.; Ricard, D. On the importance of local dynamics in statokinesigram: A multivariate approach for postural control evaluation in elderly. PLoS ONE 2018, 13, e0192868. [Google Scholar] [CrossRef]
- Mandalidis, D.G.; Karagiannakis, D.N. A comprehensive method for assessing postural control during dynamic balance testing. MethodsX 2020, 7, 100964. [Google Scholar] [CrossRef]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, 15067. [Google Scholar] [CrossRef]
- Schubert, P.; Kirchner, M.; Schmidtbleicher, D.; Haas, C.T. About the structure of posturography: Sampling duration, parametrization, focus of attention (part I). J. Biomed. Sci. Eng. 2012, 5, 496–507. [Google Scholar] [CrossRef]
- Rougier, P. Visual feedback induces opposite effects on elementary centre of gravity and centre of pressure minus centre of gravity motions in undisturbed upright stance. Clin. Biomech. 2003, 18, 341–349. [Google Scholar] [CrossRef]
- Charles, P.; Javier, C.S.; Mikel, D.S.; Arana, U.; Erik, M.M.; Javier, C.G.F.; Ignacio, T.E.P.; Mar, G.O.M.; Héctor, L.M. System for Diagnosing Balance, and Sensor-Equipped Platform of Said System. Patent WO 2023/052670, 25 July 2023. [Google Scholar]
- Ruhe, A.; Fejer, R.; Walker, B. The test–retest reliability of centre of pressure measures in bipedal static task conditions—A systematic review of the literature. Gait Posture 2010, 32, 436–445. [Google Scholar] [CrossRef]
- Crenna, F.; Rossi, G.B.; Berardengo, M. Filtering Biomechanical Signals in Movement Analysis. Sensors 2021, 21, 4580. [Google Scholar] [CrossRef] [PubMed]
- Koltermann, J.J.; Floessel, P.; Hammerschmidt, F.; Disch, A.C. The Influence of Anthropometric Variables and Filtering Frequency on Center of Pressure Data. Sensors 2023, 23, 5105. [Google Scholar] [CrossRef] [PubMed]
- Schubert, P.; Kirchner, M. Ellipse area calculations and their applicability in posturography. Gait Posture 2014, 39, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, G.; Zhang, R.; Lin, J.; Chen, Y.; Jin, X.; Ning, G. Measuring the Local and Global Variabilities in Body Sway by Nonlinear Poincaré Technology; Measuring the Local and Global Variabilities in Body Sway by Nonlinear Poincaré Technology. IEEE Trans. Instrum. Meas. 2019, 68, 4817–4824. [Google Scholar] [CrossRef]
- Bolaños, J.D.; Valencia, J.F.; Vallverdú, M.; Valencia, D.F.; Borrat, X.; Garnbús, P.L. Selección del tiempo de retardo en el gráfico de Poincaré: Medición de los niveles de sedación y analgesia con señales EEG. Ingeniare Rev. Chil. Ing. 2021, 29, 27–40. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of participants (n) | 28 |
Age (years) | 37.5 ± 17.86 |
Mass (kg) | 71.4 ± 12.10 |
Height (m) | 1.72 ± 0.09 |
2 | 10 | 20 | |
---|---|---|---|
E1 | E2 | E3 | |
E4 | E5 | E6 | |
E7 | E8 | E9 |
Indices | Definition | |
---|---|---|
ML | AP | |
Mean distance | ||
Mean velocity | ||
95% PEA | ; | |
Poincaré diagram | |
CoP Direction | Feedback | Amplitude | |||
---|---|---|---|---|---|
2 | 10 | 20 | |||
w | 0.29 ± 0.16 | 0.40 ± 0.15 | 0.52 ± 0.17 | ||
0.31 ± 0.14 | 0.39 ± 0.17 | 0.49 ± 0.22 | |||
1.41 ± 0.81 | 1.83 ± 1.47 | 2.20 ± 1.15 | |||
w/o | 0.25 ± 0.12 | 0.32 ± 0.13 | 0.42 ± 0.1 | ||
0.28 ± 0.09 | 0.35 ± 0.12 | 0.41 ± 0.15 | |||
1.36 ± 0.62 | 1.35 ± 0.83 | 1.55 ± 0.64 | |||
w | 1.01 ± 0.41 | 1.07 ± 0.42 | 1.42 ± 0.59 | ||
1.30 ± 0.66 | 1.19 ± 0.52 | 1.42 ± 0.61 | |||
0.69 ± 0.19 | 0.76 ± 0.28 | 0.79 ± 0.27 | |||
w/o | 0.91 ± 0.55 | 0.91 ± 0.37 | 1.13 ± 0.40 | ||
1.27 ± 0.68 | 0.96 ± 0.44 | 1.20 ± 0.47 | |||
0.55 ± 0.14 | 0.66 ± 0.17 | 0.70 ± 0.14 |
CoP Direction | Amplitude (°) | ||||||
---|---|---|---|---|---|---|---|
2 | 10 | 20 | |||||
Increase | p Value | Increase | p Value | Increase | p Value | ||
16.00% | 0.3881 | 25.00% | 0.0345 | 23.81% | 0.0186 | ||
10.71% | 0.2830 | 11.43% | 0.2846 | 19.51% | 0.1323 | ||
3.68% | 0.7902 | 35.56% | 0.1447 | 41.94% | 0.0110 | ||
10.99% | 0.4341 | 17.58% | 0.1278 | 25.66% | 0.0301 | ||
2.36% | 0.8365 | 23.96% | 0.0891 | 18.33% | 0.1301 | ||
25.45% | 0.0016 | 15.00% | 0.0884 | 12.86% | 0.1196 |
CoP Direction | Feedback | Amplitude | |||
---|---|---|---|---|---|
2 | 10 | 20 | |||
w | 0.83 ± 0.34 | 1.75 ± 0.71 | 2.76 ± 1.16 | ||
0.94 ± 0.46 | 1.65 ± 0.79 | 2.03 ± 0.86 | |||
3.63 ± 1.67 | 8.10 ± 4.54 | 13.31 ± 6.83 | |||
w/o | 0.70 ± 0.24 | 1.36 ± 0.52 | 2.17 ± 0.91 | ||
0.87 ± 0.43 | 1.40 ± 0.58 | 2.01 ± 0.69 | |||
2.90 ± 0.82 | 6.03 ± 2.54 | 9.55 ± 4.15 | |||
w | 2.75 ± 1.22 | 5.05 ± 1.92 | 8.81 ± 3.56 | ||
2.40 ± 0.92 | 4.59 ± 1.70 | 7.17 ± 2.74 | |||
1.32 ± 0.52 | 2.68 ± 1.57 | 3.45 ± 2.04 | |||
w/o | 2.07 ± 0.73 | 4.07 ± 1.50 | 6.79 ± 2.40 | ||
2.39 ± 0.80 | 4.03 ± 1.55 | 6.10 ± 2.45 | |||
1.23 ± 0.29 | 2.16 ± 0.53 | 2.85 ± 0.88 |
CoP Position | Amplitude (°) | ||||||
---|---|---|---|---|---|---|---|
2 | 10 | 20 | |||||
Increase | p Value | Increase | p Value | Increase | p Value | ||
18.57% | 0.0147 | 28.68% | 0.0234 | 27.19% | 0.0390 | ||
08.04% | 0.5525 | 17.85% | 0.1757 | 00.99% | 0.2065 | ||
25.17% | 0.0417 | 34.33% | 0.0393 | 39.37% | 0.0159 | ||
32.85% | 0.0041 | 24.08% | 0.0371 | 29.75% | 0.0160 | ||
00.42% | 0.9401 | 13.89% | 0.2105 | 17.54% | 0.1272 | ||
07.32% | 0.4196 | 24.07% | 0.1036 | 21.05% | 0.1596 |
Feedback | Amplitude | |||
---|---|---|---|---|
2 | 10 | 20 | ||
w | 7.69 ± 5.32 | 13.43 ± 7.22 | 23.67 ± 14.92 | |
11.26 ± 7.60 | 14.88 ± 10.55 | 21.75 ± 16.54 | ||
25.27 ± 12.22 | 41.13 ± 46.02 | 48.39 ± 31.10 | ||
w/o | 7.30 ± 8.06 | 9.15 ± 5.85 | 14.26 ± 7.41 | |
9.66 ± 5.61 | 11.06 ± 7.82 | 16.06 ± 10.18 | ||
19.45 ± 7.99 | 27.2 ± 20.86 | 33.47 ± 20.33 |
Amplitude (°) | ||||||
---|---|---|---|---|---|---|
2 | 10 | 20 | ||||
Increase | p Value | Increase | p Value | Increase | p Value | |
5.09% | 0.8311 | 31.87% | 0.0182 | 39.75% | 0.0042 | |
14.20% | 0.3743 | 25.67% | 0.1295 | 26.13% | 0.1275 | |
23.01% | 0.0397 | 33.87% | 0.1504 | 30.82% | 0.0383 |
PoincaréAxis | Feedback | Amplitude | |||
---|---|---|---|---|---|
2 | 10 | 20 | |||
w | 0.05 ± 0.02 | 0.08 ± 0.03 | 0.13 ± 0.05 | ||
0.04 ± 0.01 | 0.08 ± 0.03 | 0.11 ± 0.04 | |||
0.06 ± 0.03 | 0.13 ± 0.09 | 0.20 ± 0.12 | |||
w/o | 0.03 ± 0.01 | 0.07 ± 0.02 | 0.10 ± 0.03 | ||
0.04 ± 0.01 | 0.06 ± 0.02 | 0.10 ± 0.04 | |||
0.05 ± 0.02 | 0.09 ± 0.04 | 0.14 ± 0.07 | |||
w | 0.97 ± 0.35 | 1.04 ± 0.32 | 1.27 ± 0.41 | ||
1.11 ± 0.44 | 1.20 ± 0.43 | 1.33 ± 0.50 | |||
1.28 ± 0.60 | 1.59 ± 0.79 | 1.86 ± 0.86 | |||
w/o | 0.81 ± 0.42 | 0.89 ± 0.31 | 1.04 ± 0.33 | ||
0.93 ± 0.37 | 0.94 ± 0.37 | 1.13 ± 0.35 | |||
1.24 ± 0.48 | 1.24 ± 0.62 | 1.42 ± 0.55 |
Poincare Axis | Amplitude (°) | ||||||
---|---|---|---|---|---|---|---|
2 | 10 | 20 | |||||
Increase | p Value | Increase | p Value | Increase | p Value | ||
66.67% | 0.0103 | 14.29% | 0.0210 | 30.00% | 0.0265 | ||
0.00% | 0.8681 | 33.33% | 0.1600 | 10.00% | 0.1601 | ||
20.00% | 0.0369 | 44.44% | 0.0348 | 42.86% | 0.0165 | ||
19.75% | 0.3627 | 16.85% | 0.0270 | 22.12% | 0.0106 | ||
19.35% | 0.3632 | 27.66% | 0.3022 | 17.70% | 0.1199 | ||
03.23% | 0.7538 | 28.23% | 0.1255 | 30.99% | 0.0125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela, R.; Corral, J.; Diez, M.; Campa, F.J.; Herrero, S.; Macho, E.; Pinto, C. On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations. Sensors 2024, 24, 1588. https://doi.org/10.3390/s24051588
Valenzuela R, Corral J, Diez M, Campa FJ, Herrero S, Macho E, Pinto C. On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations. Sensors. 2024; 24(5):1588. https://doi.org/10.3390/s24051588
Chicago/Turabian StyleValenzuela, Ruben, Javier Corral, Mikel Diez, Francisco J. Campa, Saioa Herrero, Erik Macho, and Charles Pinto. 2024. "On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations" Sensors 24, no. 5: 1588. https://doi.org/10.3390/s24051588
APA StyleValenzuela, R., Corral, J., Diez, M., Campa, F. J., Herrero, S., Macho, E., & Pinto, C. (2024). On-Screen Visual Feedback Effect on Static Balance Assessment with Perturbations. Sensors, 24(5), 1588. https://doi.org/10.3390/s24051588