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Abstract: In this study, the novel mobile dynamometric platform, OREKA, was utilized to perform
an extensive analysis of the centre of pressure behaviour during different tilt motion exercises. This
platform is based on a parallel manipulator mechanism and can perform rotations around both
horizontal axes and a vertical translation. A group of participants took part in an experimental
campaign involving the completion of a set of exercises. The aim was to evaluate the platform’s
potential practical application and investigate the impact of visual on-screen feedback on centre of
pressure motion through multiple balance indicators. The use of the OREKA platform enables the
study of the impact on a user’s balance control behaviour under different rotational perturbations,
depending on the availability of real-time visual feedback on a screen. Furthermore, it presented
data identifying postural control variations among clinically healthy individuals. These findings
are fundamental to comprehending the dynamics of body balance. Further investigation is needed
to explore these initial findings and fully unlock the potential of the OREKA platform for balance
assessment methodologies.

Keywords: balance assessment; parallel manipulator; force plate; posturography; centre of pressure

1. Introduction

Body balance is essential for performing everyday tasks such as walking, running,
or standing, and allows individuals to maintain autonomy in their daily activities [1]. To
achieve this, humans acquire sensorial inputs obtained from the vestibular, visual, and
somatosensory systems which are then processed by the central nervous system (CNS) to
produce the required muscular activity to maintain the vertical projection of the centre of
mass (CoM) within the limits of the base of support (BoS) [2]. The CoM is defined as the
point where all the mass of the human body can be considered concentrated, and the BoS is
the area delimited by the placement of the feet [3].

Body balance can be categorized as static or dynamic. Static balance refers to maintain-
ing the CoM in a specific posture without disturbances, whereas dynamic balance involves
projecting the CoM outside the BoS, like walking or moving from sitting to standing [4].
Numerous studies have consistently demonstrated that falls are predominantly associated
with dynamic balance rather than static balance [5].

Unfortunately, balance impairment is common, affecting the quality of life of several
people. One of the most common pathologies that affects balance is cerebrovascular disease
(CVD) or stroke. In Spain, around 890 cases were recorded annually between 2010 and
2014 [6]. After stroke, it becomes crucial to assess the degree of impairment in mobility and
balance [7]. To achieve this, several types of standardized clinical evaluations have been
developed.

One of the most frequently applied tests to assess balance is the Romberg test [8]. In
this evaluation, the patient is requested to maintain balance during a standing position and
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walking with two conditions: eyes open (EO) and eyes closed (EC). The premise is that
when the vision sensorial input is absent, the remaining proprioceptive and somatosensory
systems are sufficient to keep balance [9]. If a significant sway is present during the EC
condition, the doctor diagnoses potential issues with the proprioceptive and somatosensory
systems. The main issue with this test is that the “significant sway” is entirely subjective to
the doctor that is assessing the patient.

Other evaluations like the Berg Balance Scale (BBS) were originally designed to assess
balance in older adults [10], and their use was later extended to assess stroke patients [11].
This test consists of 14 functional tasks divided into three categories: sitting balance,
standing balance, and dynamic balance. These are performed in a clinical setting, and
a score is assigned based on the time it takes the user to complete the task or perform it
without the need for any kind of assistance, taking approximately 10 to 15 min to complete.
Each item is then assigned a score between 0 and 4 points for a total global score of 56 points.
Scores ranging from 0 to 20 points indicate a balance impairment, 21 to 40 points represent
an acceptable balance, and 41 to 56 a good balance.

Another test that evaluates the performance of specific tasks is the Tinetti Balance Test
(TBT); in detail, this assessment is divided into static and dynamic balance, for example,
standing with both feet together or on one leg, sitting and standing off a chair, and gait
analysis, initiation of gait, step height, step length, etc. [12]. After a task is completed,
a score of 0, 1, or 2 is assigned depending on the performance shown by the user, where the
maximum possible score is 44 points. For example, when evaluating rising from a chair,
the three possible performances are as follows: Unable to stand without help (score = 0),
able to stand but uses arms to help (score = 1), and able without use of arms (score = 2).
After completing all the tasks and adding up the scores, if the total score is below 18 points,
it is considered that the person has a high fall risk, if the score is between 19 and 23 it
relates to a moderate fall risk, and if the score is above 24 then a low fall risk is assigned.
This test was originally planned to be applied to older adults, but nowadays it can be
applied to any patient deemed to possess fall risk [13]. It is important to note that some of
the test considerations used to evaluate the score involve a highly subjective assessment,
e.g., when evaluating the eyes closed standing posture, if the subject is unstable a score of
0 is assigned, whereas if the subject is stable a score of 1 is assigned, but what is judged as
stable may vary for different doctors.

There are also other types of clinical assessment mobility tests that require less equip-
ment and time to perform, such as the Timed Up and Go (TUG) test which can also be used
to identify balance issues [14]. This test consists of measuring the time it takes to stand up
from a chair, walk 3 m, turn back, and sit in the chair again. If the time it takes to perform
this task is less than 20 s then the subject is considered to have a normal mobility, if the
score is between 21 and 29 s then the subject is considered to have some mobility issues
and may need assistance, and if the length is greater than 30 s then the subject is considered
to be completely dependent.

Tests have also been developed to specifically evaluate people who have had a stroke,
such as the Rivermead Motor Assessment (RMI). This test consists of a questionnaire with
14 binary (Yes/No) questions related to the person’s autonomy to perform routine activities
and direct observation of the user getting up from a chair without assistance [15]. The
questions are ordered from least to most difficult, and each one is assigned a score of 0 or
1 depending on the response, so the highest possible score is 15 points.

The clinical tests mentioned above involve two distinct methodologies. The first
method measures the time it takes for a patient to execute a specific task and the second
one evaluates how the task is performed. While these tests provide valuable insights into
balance assessment, they also possess a high degree of subjectivity that could affect their
accuracy. To solve this subjectivity problem, a second technique known as posturography
can be used, which employs quantitative measurements for balance assessment [16–23].

This method, grounded in measurable, precise, and repeatable indicators, relies heavily
on indices such as those derived from the centre of mass (CoM) or the centre of pressure
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(CoP), defined as the point in the ground where a single applied force would have the same
translational and rotational effects as the actual distributed applied forces. The indices of
CoP, such as movement amplitude and speed, are widely acknowledged to be related to
the balance function [24]. These movement parameters can provide a relevant insight into
an individual’s postural control, with distinct patterns being observable between healthy
subjects and those with compromised balance. Given that obtaining the behaviour of the
CoM in real time can be time-consuming, as it requires either measuring the weight of each
body segment and its position in 3D space or the video input of 3D kinematic models, the
use of CoP is often preferred [21].

Posturography paradigms can be classified into static or dynamic [25–27], with each
one being able to evaluate different postural control mechanisms. These paradigms serve
as references from which measurements, observation, and analysis of the patterns and
movements can be associated with balance and posture.

The static posturography paradigm focuses on an individual’s ability to maintain
a steady standing posture on a flat, horizontal surface under various conditions, such as EO
or EC [28,29]. This paradigm is particularly significant in identifying how the body uses
ankle torque to stabilize the CoM within the boundaries of the BoS, thereby maintaining
balance with minimal deviations [17].

On the other hand, the dynamic posturography paradigm introduces deliberate per-
turbations to assess the individual’s adaptive responses within their postural control
system [30–32]. This enables a thorough examination of the body’s reflexes and responses
to unexpected changes, which is critical in real-world environments where balance is
constantly challenged.

The CoP signal obtained from these paradigms offers important insights into the
complexity of the postural control mechanism and the potential changes brought about by
pathological conditions. The indices derived from the CoP signal such as mean distance,
mean velocity, and prediction ellipse area, among others, provide a quantitative basis for
analysing body sway, balance, and postural stability [33,34].

There are studies indicating differences in postural control behaviour among users
based on whether or not they receive visual feedback on a screen [35]. These observations,
however, are primarily based on experiments that were conducted using static dynamo-
metric platforms.

The aim of this paper is to explore variations in the behaviour of different CoP indices
using the mobile platform OREKA, a novel mobile dynamometric platform designed and
developed at the University of the Basque Country for balance evaluation. Our goal is to
explore the impact of real-time visual feedback on a screen on balance indicators among
clinically healthy individuals.

2. Materials and Methods
2.1. Description of the OREKA Platform

The OREKA (balance in Basque) dynamometric mobile platform is based on
a three-kinematic-chains prismatic-revolute-spherical (PRS) joint parallel mechanism with
three degrees of freedom (Figure 1). In a coordinate system where x-axis represents
left/right, y-axis represents forward/backward, and z-axis represents up/down, the plat-
form can perform rotations around the y and x axis, roll/mediolateral (θ), and pitch/
anteroposterior (ψ), respectively, and a displacement on the z-axis. The platform is actuated
by the vertical prismatic joint Pn, where n = 1 . . . 3 with a travel of 250 mm. The pitch and
roll angle ranges were determined based on the requirements provided by rehabilitation
medical specialists, allowing for a range of ±15◦ for both variables. Displacement in the z
direction is achieved by simultaneously activating all three actuators in the same direction.
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The OREKA platform’s hardware consists of three synchronous motors chosen for 

this setup, each with a power of 3.6 kW and identified as B&R (www.br-automation.com, 

B&R: Eggelsberg, Austria) model 8LSA55.DA030S000-3. These motors are governed by 

ACOPOS P3 controllers, specified as model 8EI013HWS10.0200-1 (B&R). They are inte-

grated with ball bearing linear guides (model EGC-BS-KF-GK) from FESTO 

(www.festo.com, FESTO: Esslingen, Germany). Motion control is performed through the 

B&R panel PC 3100. Additionally, the system employs four uniaxial force sensors—Inter-

face GWMC (www.interfaceforce.com, Interface Force: Scottsdale, AR, USA)—employing 

strain gauges capable of measuring forces up to 2000 N. These sensors are connected to 

X20AI4636 B&R modules for data acquisition, capturing information at a frequency of 50 

Hz. The OREKA platform is patented with the reference number WO 2023/052670 [36]. 

The OREKA platform is designed to provide real-time feedback on the position of 

the CoP to the user while the platform rotations are ongoing. This is achieved by visually 

displaying the AP and ML position on a screen (Figure 2). If the user leans forward, then 

the marker corresponding to the 𝑦𝐶𝑜𝑃 (AP direction of the CoP) moves upwards; con-
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𝑥𝐶𝑜𝑃 (ML direction of the CoP) direction, if the user leans to the right, then the marker 

also moves to the right, and finally if the user leans to the left, then the marker moves to 

the same left direction. 

Figure 1. OREKA platform (Pn where n = 1 . . . 3 are the prismatic joints).

The mobile platform consists of two aluminium plates with a non-uniform thickness
of at least 12 mm, with reinforcement ribs up to a maximum thickness of 20 mm. The
bottom plate is where the spherical joints of the PRS mechanism are located. In between the
plates, four uniaxial force sensors have been placed at the corners to acquire force signals
to be used to compute the position. The top plate provides the surface on which the subject
stands during testing.

The OREKA platform’s hardware consists of three synchronous motors chosen for
this setup, each with a power of 3.6 kW and identified as B&R (www.br-automation.
com, B&R: Eggelsberg, Austria) model 8LSA55.DA030S000-3. These motors are governed
by ACOPOS P3 controllers, specified as model 8EI013HWS10.0200-1 (B&R). They are
integrated with ball bearing linear guides (model EGC-BS-KF-GK) from FESTO (www.festo.
com, FESTO: Esslingen, Germany). Motion control is performed through the B&R panel
PC 3100. Additionally, the system employs four uniaxial force sensors—Interface GWMC
(www.interfaceforce.com, Interface Force: Scottsdale, AR, USA)—employing strain gauges
capable of measuring forces up to 2000 N. These sensors are connected to X20AI4636 B&R
modules for data acquisition, capturing information at a frequency of 50 Hz. The OREKA
platform is patented with the reference number WO 2023/052670 [36].

The OREKA platform is designed to provide real-time feedback on the position of
the CoP to the user while the platform rotations are ongoing. This is achieved by visually
displaying the AP and ML position on a screen (Figure 2). If the user leans forward, then the
marker corresponding to the yCoP (AP direction of the CoP) moves upwards; conversely, if
the user leans backwards, then the marker moves downwards. Similarly, in the xCoP (ML
direction of the CoP) direction, if the user leans to the right, then the marker also moves
to the right, and finally if the user leans to the left, then the marker moves to the same
left direction.

www.br-automation.com
www.br-automation.com
www.festo.com
www.festo.com
www.interfaceforce.com
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naturally at their sides, and they were to always maintain an upright posture. 

Figure 2. Visual feedback screen. The triangles are the markers that indicate both xCoP and
yCoP positions.

2.2. Experimental Protocol

For this study, twenty-eight healthy young adults were recruited, all of whom willingly
participated and informed consent was obtained. The participants, a combination of
teachers and students, were all from the University of the Basque Country UPV/EHU.
Table 1 presents a detailed overview of their respective characteristics.

Table 1. Participant characteristics.

Parameter Value

Number of participants (n) 28
Age (years) 37.5 ± 17.86
Mass (kg) 71.4 ± 12.10

Height (m) 1.72 ± 0.09

The OREKA platform can rotate in the anteroposterior (AP) and mediolateral (ML)
directions, which can vary in amplitude and angular velocity. Each exercise has a duration
of 1 min. For this study, a selection of nine exercises (Table 2) were performed to maintain
the test duration below 25 min to avoid fatigue [37].

Table 2. Selected exercises for this study. The first value in the brackets refers to the amplitude of
the negative rotations in the anterior (−ψ), and left-side (−θ) rotations, respectively. The positive
value corresponds to the posterior (ψ) and right-side (θ) rotations. The movement always starts from
values of ψ = 0 and θ = 0 towards the negative direction.

Angular Speed
(

◦

s

)
Amplitude (◦) 2 10 20

[−5,+3] AP E1 E2 E3
[−8,+4] AP E4 E5 E6
[−4,+4] ML E7 E8 E9

To ensure repeatability and to maintain a uniform CoP reference, the users were
instructed to place their feet within a predefined area that would allow them to stand
shoulder width apart, aligning their ankles with the x axis (Figure 3). Their arms were to
fall naturally at their sides, and they were to always maintain an upright posture.
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2.3. Data Processing 
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at the corners between the two plates. These sensors measure the reactive forces produced 

by a user’s weight at a sampling frequency of 50 Hz. Before interpreting these data, a 

conditioning stage to filter out any unwanted signals that could distort the calculation of 

the CoP behaviour must be applied [38]. 

It is worth noting that 99% of the frequency spectrum of the CoP signal ranges from 

0–6.5 Hz [39]. During the first experimental trials, we detected that the OREKA platform’s 

own kinematic movement introduced some perturbances at higher frequencies. There-
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zero-phase Butterworth filter with a cut-off frequency located at 7 Hz was applied. Given 
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effect on the computed indices and the high frequency noise was minimized. In Figure 4, 
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spectrum with a dead weight and the frequency response of the movement of the plat-

form. It can be noticed that the filter at 7 Hz removes the noise caused by the platform 

kinematics, maintaining the overall information at lower frequencies. 

Figure 3. Platform dimensions and area for feet placement.

For tests with feedback, a screen was positioned 1.5 m away. Users were instructed
to keep the markers shown on the screen (see Figure 2) as steady as possible in the initial
position after they had stood within the marked area. To achieve this, they could make the
necessary joint movements without lifting their feet off the platform.

For tests without feedback, the screen was replaced with a black marker positioned
at the same distance. Users were instructed to keep their gaze fixed on this marker and
maintain their back in an upright posture as steady as possible, using whatever natural
strategies their bodies required to achieve this goal.

2.3. Data Processing

As stated before, our system uses four uniaxial sensors, Interface GWMC, positioned
at the corners between the two plates. These sensors measure the reactive forces produced
by a user’s weight at a sampling frequency of 50 Hz. Before interpreting these data,
a conditioning stage to filter out any unwanted signals that could distort the calculation of
the CoP behaviour must be applied [38].

It is worth noting that 99% of the frequency spectrum of the CoP signal ranges from
0–6.5 Hz [39]. During the first experimental trials, we detected that the OREKA platform’s
own kinematic movement introduced some perturbances at higher frequencies. Therefore,
to attenuate the influence of the platform kinematics on the recorded CoP signal, a zero-
phase Butterworth filter with a cut-off frequency located at 7 Hz was applied. Given the
platform’s maximum cycle frequency of 1 Hz, the majority of spectral power of the CoP
signal would tend to be concentrated in the range of 0–1 Hz. With this, the vibratory
effect on the computed indices and the high frequency noise was minimized. In Figure 4,
the Fourier amplitude spectrum with different filters can be seen, as well as the platform
spectrum with a dead weight and the frequency response of the movement of the platform.
It can be noticed that the filter at 7 Hz removes the noise caused by the platform kinematics,
maintaining the overall information at lower frequencies.
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Figure 4. Amplitude spectrum behaviour of the measurements with different cut-off frequencies for
the filter.

When computing the velocity of the CoP (vCoPx, vCoPy), a differential algorithm to both
the x and y coordinates of the CoP positions was applied. However, this process amplifies
some high-frequency components in the velocities; thus, a second conditioning stage is
necessary. In this case, a Savitsky–Golay filter is applied. This filter was selected for its
characteristic to preserve important data features while smoothing out noise. To obtain a
cut-off frequency close to 10 Hz, a combination of parameters is required: a fourth-order
filter with a sampling window of 17 elements.

2.4. Inertial Compensation

When assessing balance on a moving platform, it is important to consider the inertia
effects of the upper plate on the sensors. This factor can influence the measurements of the
CoP. Therefore, incorporating a compensation mechanism in the data post-processing stage
is essential to ensure accuracy in the results.

As previously stated, the rotations are performed around the x and y axis to produce
both AP (ψ) and ML (θ) rotations, respectively. The fixed reference frame OXYZ and
the platform reference frame xyz are placed in the same position (Figure 3) 2 mm below
the upper plate plane, aligning with the horizontal plane that contains the centre of the
three spherical joints. The rotation matrix R used to specify the rotations performed in the
platform reference frame xyz with respect to the fixed reference frame OXYZ is as follows:

R = RyRx =

 cosθ sinψsinθ cosψsinθ
0 cosψ −sinψ

−sinθ sinψcosθ cosψcosθ

 (1)

Applying Newton’s second law along the z axis of the platform frame, the equation
with the forces shown in Figure 5 is as follows:

F1 + F2 + F3 + F4 − Wpcosψcosθ − Wcosψcosθ = MaGz (2)

where

Fi; i = 1 . . . 4 are the forces measured by the sensors.
Wp; The weight of the platform.
W; The weight of the user.
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The projection of the weight W on the platform reference frame is then obtained
as follows:

W =


Wx
Wy
Wz

 = RT


0
0

−W

 =

 cosθ 0 −sinθ
sinψsinθ cosψ sinψcosθ
cosψsinθ −sinψ cosψcosθ


0
0

−W

 =


Wsinθ

−Wsinψcosθ
−Wcosψcosθ

 (3)

Reordering Equation (2), the forces that the sensors are measuring are as follows:

F1 + F2 + F3 + F4 = MaGz + Wpcosψcosθ + Wcosψcosθ (4)

To compensate the moments around the X and Y axis, Newton’s second law for
rotational systems with respect to G is applied:

NG = NGW + NGFi =
dHG

dt
(5)

where NG is the total torque and dHG
dt is the rate of change in the angular momentum.

dHG
dt is obtained analytically through the formula d

dt (IG × ω), where IG represents the
moment of inertia and ω the angular velocity. To implement this formula, we used the
data acquired by the platform, which include measurements of rotational velocity and
acceleration. Additionally, the moment of inertia IG and the inertia products are obtained
through the CAD model of the platform.

Since only the weight of the user and the force on the sensors exert a torque on the
platform, each torque is calculated as follows:

NGW = GC × W =


GCyWz − GCzWy
GCzWx − GCxWz
GCxWy − GCyWx

 (6)

and GC is defined as

GC =


GCx
GCy
GCz

 = GO + OC = −OG + OC =


−OGx + xCOP
−OGy + yCOP
−OGz + zCOP

 (7)
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NGFi = GAi × Fi =


GAiyFiz
−GAixFiz

0

 (8)

and GA is defined as
GAi = GO + OAi = −OG + OAi (9)

GA1 =


−OGx − a
−OGy − b

−OGz + zCOP

 (10)

GA2 =


−OGx − a
−OGy + b

−OGz + zCOP

 (11)

GA3 =


−OGx + a
−OGy + b

−OGz + zCOP

 (12)

GA4 =


−OGx + a
−OGy − b

−OGz + zCOP

 (13)

where

a; Distance in x axis from O to the sensor Ai.
b; Distance in y axis from O to the sensor Ai.

To calculate the xCoP and yCoP positions with the inertial compensation, the following
equations are used:

xCoP = OGx −

(
dHG

dt

)
y
+ ∑4

i=1 GAixFi − (−OGz + zCoP)Wx

Wz
(14)

yCoP = OGy +

(
dHG

dt

)
x
− ∑4

i=1 GAiyFi + (−OGz + zCoP)Wy

Wz
(15)

where zCoP is 0.2 cm (sensors measuring point), OGx = 0, OGy = 1.711 cm, and
OGz = −0.938 cm. These values were obtained with the CAD model of the platform.

2.5. CoP Indicators

To compute each indicator, we use a sample of 30 s, ranging from 10 to 40 s from the
original minute duration of the exercise, to eliminate the variations present during the start
and end of the rotation and to ensure the cyclic behaviour of a user during the exercise.

The position metrics offer insights into a user’s body sway and how it varies over time
and across the different conditions of the tests. In Figure 6, a stabilogram that illustrates the
AP and ML positions is presented, highlighting observable differences between these posi-
tions as influenced by the platform’s rotation. In addition, the velocity parameters describe
the speed at which body sway occurs, reflecting the responsiveness and adaptability of
a user’s postural control system to the platform’s movements, as shown in Figure 7.
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Figure 7. Velocity signal for exercise 5 ([−8◦, +4◦] AP; 10◦/s) with visual feedback on a screen.

The 95% prediction ellipse area (PEA) of the statokinesigram is determined by first
calculating the sample variance in the ML and AP directions as well as the sample covari-
ance between ML and AP, all of which are contained in the sample covariance matrix S
(Table 3). Following this, the chi-squared value with two degrees of freedom, which will
encompass a future data point with 95% of probability (represented as χ2

0.95,2), is identified
using reference tables. The final step in computing the PEA involves taking the square
root of the product of the two eigenvalues of [S] and multiplying this value by χ2

0.95,2 [40].
This indicator provides an overall measure of the body sway, offering a global view of the
postural stability during each exercise. In Figure 8, a statokinesigram is shown where the
evolution through time is depicted as a colour variation from cold (test start) to warm (test
end) colours.
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Table 3. CoP indicators.

Indices
Definition

ML AP

Mean distance dCOPx = 1
N

N
∑

i=1
|CoPxi| dCOPy = 1

N

N
∑

i=1

∣∣∣CoPyi

∣∣∣
Mean velocity 1

N−1

N−1
∑

i=1
vCoPxi

1
N−1

N−1
∑

i=1
vCoPyi

95% PEA PEA = πχ2
0.95,2

√
det(S); S =

(
s2

x sx,y
sx,y s2

y

)
Poincaré diagram CoP(i) =

√
(xCoPi)

2 + (yCoPi)
2

CoP(i)vsCoP(i + 1);
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Figure 8. Statokinesigram for exercise 5 ([−8◦, +4◦] AP; 10◦/s) with feedback on a screen.

Lastly, the ellipse axis SD1/SD2 of the Poincaré diagram, where SD1 is the minor
axis, perpendicular to the identity line, and SD2 is the major axis, parallel to the identity
line (Figure 9), offers an analysis of the variability and the correlation between consecutive
data points in the CoP signal [41]. This gives a unique insight into the control mecha-
nisms used by the postural control system under the varying conditions presented by the
OREKA platform.

Other research fields, like electrocardiogram analysis have applied the Poincaré plot
as an assessment tool for assessing beat-to-beat variability. It displays a signal against itself
with a delay, resulting in a scatter of points forming a cloud around a 45◦ line of identity.
This cloud of points can be enclosed by an ellipse, which can be analysed to extract valuable
information about the heart rate variability [42]. The major axis, the standard deviation
along the line of identity of the Poincaré plot (SD2), corresponds to long-term variability,
while the minor axis, the standard deviation perpendicular to the line of identity (SD1),
represents short-term variability.
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𝜇𝐴𝑃 =
1

𝑁
∑ 𝑦𝐶𝑜𝑃𝑖

𝑁

𝑖=1
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Figure 9. Poincaré diagram for exercise 5 ([−8◦, +4◦] AP; 10◦/s) with feedback on a screen.

The use of parameters such as mean distance, mean velocity, prediction ellipse area
of the statokinesigram, and the SD1/SD2 ellipse axis of the Poincaré diagram provides
a significant role in describing postural control behaviour through various rotations and
angular velocities performed by the OREKA platform (Table 3).

To compute the mean distance, mean velocity, the 95% PEA, and the Poincaré diagram,
first, the datapoints must be centred to the origin. To do that, for every xCoPi and yCoPi
measured point, the mean value of all the positions is then subtracted:

µML =
1
N

N

∑
i=1

xCoPi (16)

µAP =
1
N

N

∑
i=1

yCoPi (17)

CoPxi = xCoPi − µML (18)

CoPyi = yCoPi − µAP (19)

where N is the total number of datapoints. Once every xCoPi yCoPi are calculated, velocities
are then obtained by applying a discrete centred differential algorithm:

vCoPxi =
CoPx(i + 1)− CoPx(i − 1)

t(i + 1)− t(i − 1)
(20)

vCoPyi =
CoPy(i + 1)− CoPy(i − 1)

t(i + 1)− t(i − 1)
(21)

where t is time. With these data, the indicators in Table 3 can be calculated.
Where S is the covariance matrix of the sample and χ2

0.95,2 = 5.99146 for a fixed proba-
bility level of P = 95%. This gives a unique insight into the control mechanisms used by the
postural control system under the varying conditions presented by the OREKA platform.
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2.6. Data Analysis

The normality of the distribution was verified using the Shapiro–Wilk test given
the presence of a normal distribution of quantitative variables and the use of parametric
statistics. Therefore, a paired T-test for comparing means was applied. The α level for
all statistical tests was set at 0.05. In each of the CoP indices, a table is provided with the
comparison of the mean values of the tests with on-screen feedback with respect to the tests
without on-screen feedback, along with the respective p-values.

3. Results and Discussion
3.1. Characterization of x and y Distances

In Figure 10, variations in AP and ML positions are observed between the same user
by modifying the test conditions with and without real-time visual feedback on a screen,
even though they are classified as clinically healthy. When feedback on a screen is present,
a wider amplitude of the signal, compared to the amplitude of the signal without said
feedback, can be observed.
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Figure 10. Comparison of the ML and AP position behaviours for exercise 5 ([−8◦, +4◦] AP; 10◦/s).

An explanation for this is the change in the task requirements for the users. Initially,
with feedback on a screen, the users were requested to keep the markers fixed at the initial
position, a task that demands active engagement and continual adjustments to maintain
balance. This scenario inherently causes more significant CoP displacements as the users
actively respond to the feedback on a screen to manage their postural control.

When feedback on a screen is removed, the nature of the task undergoes modification.
Now, the users are only required to maintain an upright stance, with no specific targets
for alignment. Under these conditions, their need to actively respond to visual cues is
removed, allowing the users to fall back on a more passive postural control strategy that
likely corresponds more closely to their natural body sway.

In Table 4, which presents the mean and standard deviations of the x and y distances,
there is a reduction in these values when feedback on a screen is removed. As previously
stated, this reduction could be attributed to the user changing from actively maintaining
balance to instinctively adapting to the platform’s rotation using natural body responses
when the task of keeping the markers at their initial position is removed. The decrease in
the standard deviation further supports this interpretation. It suggests that users adapt
more effectively to the platform’s rotations without feedback on a screen.
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Table 4. dCoPx and dCoPy (cm) with (w) and without (w/o) feedback on a screen.

CoP
Direction Feedback Amplitude

Angular Speed
(

◦

s

)
2 10 20

dCoPx

w
[−5,+3] AP 0.29 ± 0.16 0.40 ± 0.15 0.52 ± 0.17
[−8,+4] AP 0.31 ± 0.14 0.39 ± 0.17 0.49 ± 0.22
[−4,+4] ML 1.41 ± 0.81 1.83 ± 1.47 2.20 ± 1.15

w/o
[−5,+3] AP 0.25 ± 0.12 0.32 ± 0.13 0.42 ± 0.1
[−8,+4] AP 0.28 ± 0.09 0.35 ± 0.12 0.41 ± 0.15
[−4,+4] ML 1.36 ± 0.62 1.35 ± 0.83 1.55 ± 0.64

dCoPy

w
[−5,+3] AP 1.01 ± 0.41 1.07 ± 0.42 1.42 ± 0.59
[−8,+4] AP 1.30 ± 0.66 1.19 ± 0.52 1.42 ± 0.61
[−4,+4] ML 0.69 ± 0.19 0.76 ± 0.28 0.79 ± 0.27

w/o
[−5,+3] AP 0.91 ± 0.55 0.91 ± 0.37 1.13 ± 0.40
[−8,+4] AP 1.27 ± 0.68 0.96 ± 0.44 1.20 ± 0.47
[−4,+4] ML 0.55 ± 0.14 0.66 ± 0.17 0.70 ± 0.14

It is also worth noting that when the platform rotates in the AP direction, the CoP
motion in the x direction is smaller than the y direction when the platform rotates in the
ML direction. This difference may be due to the user’s confidence in controlling balance in
the x direction. This is a regularly engaged movement pattern, for example, when shifting
the body weight between legs during extended periods while on a standing posture. On
the other hand, swaying in the y direction is less common in typical movements, making it
a less familiar balance challenge to navigate.

Table 5 highlights that exercises 2, 3, and 9 present a significant increase (p < 0.05) in
the dCoPx . Similarly, in the dCoPy , it is shown that exercises 3 and 7 exhibit this significant
increase in the mean values (p < 0.05).

Table 5. Percentage of increase and p-values for the mean values of dCoPy and dCoPy (cm) with
on-screen feedback with respect to the tests without on-screen feedback.

CoP
Direction

Amplitude
(◦)

Angular Speed
(

◦

s

)
2 10 20

Increase p Value Increase p Value Increase p Value

dCoPx x
[−5,+3] AP 16.00% 0.3881 25.00% 0.0345 23.81% 0.0186
[−8,+4] AP 10.71% 0.2830 11.43% 0.2846 19.51% 0.1323
[−4,+4] ML 3.68% 0.7902 35.56% 0.1447 41.94% 0.0110

dCoPy

[−5,+3] AP 10.99% 0.4341 17.58% 0.1278 25.66% 0.0301
[−8,+4] AP 2.36% 0.8365 23.96% 0.0891 18.33% 0.1301
[−4,+4] ML 25.45% 0.0016 15.00% 0.0884 12.86% 0.1196

3.2. Characterization of x and y Velocities

When comparing the exercises in conditions with and without on-screen feedback
in the velocity behaviour, a similar conclusion to the one of the positions can be drawn
(Figure 11). Considering that without feedback on a screen the user does not need to actively
adjust to the platform rotation, the velocity of the CoP signal is significantly lower, meaning
that the user’s adaptive balance control is already acquainted to the platform movement.
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Figure 11. Comparison of the vCoPx and vCoPy behaviour for exercise 5 ([−8◦, +4◦] AP; 10◦/s).

As shown in Table 6, a similar trend is seen in the mean and standard deviations in
vCoPx and vCoPy. This reduction when the feedback on a screen is removed further solidifies
the theory that there exists a transition from an active to a more adaptive postural control
strategy. This last approach, characterized by instinctive body adjustments, reduces the
need for rapid movements.

Table 6. vCoPx and vCoPy (cm/s) with (w) and without (w/o) feedback on a screen.

CoP
Direction Feedback Amplitude Angular Speed

( ◦

s

)
2 10 20

vCoPx

w
[−5,+3] AP 0.83 ± 0.34 1.75 ± 0.71 2.76 ± 1.16
[−8,+4] AP 0.94 ± 0.46 1.65 ± 0.79 2.03 ± 0.86
[−4,+4] ML 3.63 ± 1.67 8.10 ± 4.54 13.31 ± 6.83

w/o
[−5,+3] AP 0.70 ± 0.24 1.36 ± 0.52 2.17 ± 0.91
[−8,+4] AP 0.87 ± 0.43 1.40 ± 0.58 2.01 ± 0.69
[−4,+4] ML 2.90 ± 0.82 6.03 ± 2.54 9.55 ± 4.15

vCoPy

w
[−5,+3] AP 2.75 ± 1.22 5.05 ± 1.92 8.81 ± 3.56
[−8,+4] AP 2.40 ± 0.92 4.59 ± 1.70 7.17 ± 2.74
[−4,+4] ML 1.32 ± 0.52 2.68 ± 1.57 3.45 ± 2.04

w/o
[−5,+3] AP 2.07 ± 0.73 4.07 ± 1.50 6.79 ± 2.40
[−8,+4] AP 2.39 ± 0.80 4.03 ± 1.55 6.10 ± 2.45
[−4,+4] ML 1.23 ± 0.29 2.16 ± 0.53 2.85 ± 0.88

In the rotations where the amplitude was low, the increment of the vCoPx with the
addition of the on-screen visual feedback is significant (p < 0.05), as stated in Table 7,
for exercises 1, 2, 3, 7, 8, and 9. While in vCoPy, exercises 1, 2, and 3 are the ones with
a significant increase in the mean values (p < 0.05).
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Table 7. Percentage of increase and p-values for vCoPx and vCoPy mean values. Velocity (cm/s) with
on-screen feedback with respect to the tests without on-screen feedback.

CoP
Position

Amplitude
(◦)

Angular Speed
(

◦

s

)
2 10 20

Increase p Value Increase p Value Increase p Value

vCoPx

[−5,+3] AP 18.57% 0.0147 28.68% 0.0234 27.19% 0.0390
[−8,+4] AP 08.04% 0.5525 17.85% 0.1757 00.99% 0.2065
[−4,+4] ML 25.17% 0.0417 34.33% 0.0393 39.37% 0.0159

vCoPy
[−5,+3] AP 32.85% 0.0041 24.08% 0.0371 29.75% 0.0160
[−8,+4] AP 00.42% 0.9401 13.89% 0.2105 17.54% 0.1272
[−4,+4] ML 07.32% 0.4196 24.07% 0.1036 21.05% 0.1596

3.3. The 95% Prediction Ellipse Area and Statokinesigram

While using the OREKA platform for assessing human postural control, variations
in the 95% PEA provide valuable insights into a user’s balance characteristics. A smaller
95% PEA typically suggests that a user has a more confined movement pattern within the
AP and ML directions, indicating better balance stability. Conversely, a larger 95% PEA
might imply a more extensive body sway, suggesting that the user may rely on larger
compensatory movements to maintain balance (Figures 12 and 13).

By comparing the 95% PEAs of different users, the OREKA platform results help
identify individual’s specific postural control strategies, thereby facilitating an approach
towards rehabilitation or balance training (Figures 14 and 15).
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Figure 15. Comparison of 95% PEAs for different users under different conditions for exercise
8 ([−4◦, +4◦] ML; 10◦/s).

In addition to the previously mentioned trend, the 95% PEA mean and the standard
deviation presented in Table 8 show a significant difference between the areas in the AP
and ML rotations. Specifically, the area in the ML rotation tends to be double the magnitude
of the AP rotation. This indicates that the CoP signal in the ML direction exhibits more
freedom of movement than in the AP direction, further reinforcing the theory that managing
balance in the ML direction shows a tendency to be natural to users. Additionally, it is
worth highlighting that the large values of the standard deviation in exercises with on-
screen feedback further support the use of different postural control strategies by the users
when instructed to maintain the markers at the origin. Particularly in exercise 8, where the
standard deviation is larger than the mean, the presence of an unusual balance behaviour
(outlier) can be identified (Figure 16). It is important to mention that, at this stage of
research, we are not discriminating the outliers, but rather determining the balance limits
for healthy subjects when using the OREKA platform.

Table 8. The 95% PEAs (cm2) with (w) and without (w/o) feedback on a screen.

Feedback Amplitude
Angular Speed

(
◦

s

)
2 10 20

w
[−5,+3] AP 7.69 ± 5.32 13.43 ± 7.22 23.67 ± 14.92
[−8,+4] AP 11.26 ± 7.60 14.88 ± 10.55 21.75 ± 16.54
[−4,+4] ML 25.27 ± 12.22 41.13 ± 46.02 48.39 ± 31.10

w/o
[−5,+3] AP 7.30 ± 8.06 9.15 ± 5.85 14.26 ± 7.41
[−8,+4] AP 9.66 ± 5.61 11.06 ± 7.82 16.06 ± 10.18
[−4,+4] ML 19.45 ± 7.99 27.2 ± 20.86 33.47 ± 20.33



Sensors 2024, 24, 1588 19 of 25

Sensors 2024, 24, 1588 22 of 29 
 

 

 

 

Figure 16. PEAs of the sample for exercise 8 with on-screen feedback ([−4°, +4°] ML; 10°/s). 

 

Table 8. The 95% PEAs (cm2) with (w) and without (w/o) feedback on a screen. 

Feedback Amplitude 
Angular Speed  (

°

𝐬
) 

2 10 20 

w 

[−5, +3] 𝐴𝑃 7.69 ± 5.32 13.43 ± 7.22 23.67 ± 14.92 

[−8, +4] 𝐴𝑃 11.26 ± 7.60 14.88 ± 10.55 21.75 ± 16.54 

[−4, +4] 𝑀𝐿 25.27 ± 12.22 41.13 ± 46.02 48.39 ± 31.10 

w/o 

[−5, +3] 𝐴𝑃 7.30 ± 8.06 9.15 ± 5.85 14.26 ± 7.41 

[−8, +4] 𝐴𝑃 9.66 ± 5.61 11.06 ± 7.82 16.06 ± 10.18 

[−4, +4] 𝑀𝐿 19.45 ± 7.99 27.2 ± 20.86 33.47 ± 20.33 

In Table 9, a significant increase in the mean values (p < 0.05) is present for exercises 

2, 3, 7, and 9. 

Table 9. Percentage of increase and p-values for the mean value of 95% PEAs (cm2) with on-screen 

feedback with respect to the tests without on-screen feedback. 

Amplitude (°) 

Angular Speed  (
°

𝐬
) 

2 10 20 

Increase p Value Increase p Value Increase p Value 

[−5, +3] 𝐴𝑃 5.09% 0.8311 31.87% 0.0182 39.75% 0.0042 

[−8, +4] 𝐴𝑃 14.20% 0.3743 25.67% 0.1295 26.13% 0.1275 

[−4, +4] 𝑀𝐿  23.01% 0.0397 33.87% 0.1504 30.82% 0.0383 

3.4. Poincaré Plot 

The variability in the 𝑆𝐷1 and 𝑆𝐷2 parameters can be visualized by applying the 

Poincaré diagram representation (Figures 17 and 18) to the 𝐶𝑜𝑃𝑥 and 𝐶𝑜𝑃𝑦 positions pre-

sented in the plot of Figure 10. In this work, these parameters were used as reference 

points to justify the exploration and characterization of the inherent non-linearities in bal-

ance systems. 

Figure 16. PEAs of the sample for exercise 8 with on-screen feedback ([−4◦, +4◦] ML; 10◦/s).

In Table 9, a significant increase in the mean values (p < 0.05) is present for exercises 2,
3, 7, and 9.

Table 9. Percentage of increase and p-values for the mean value of 95% PEAs (cm2) with on-screen
feedback with respect to the tests without on-screen feedback.

Amplitude
(◦)

Angular Speed
(

◦

s

)
2 10 20

Increase p Value Increase p Value Increase p Value

[−5,+3] AP 5.09% 0.8311 31.87% 0.0182 39.75% 0.0042
[−8,+4] AP 14.20% 0.3743 25.67% 0.1295 26.13% 0.1275
[−4,+4] ML 23.01% 0.0397 33.87% 0.1504 30.82% 0.0383

3.4. Poincaré Plot

The variability in the SD1 and SD2 parameters can be visualized by applying the
Poincaré diagram representation (Figures 17 and 18) to the CoPx and CoPy positions
presented in the plot of Figure 10. In this work, these parameters were used as reference
points to justify the exploration and characterization of the inherent non-linearities in
balance systems.

A more compact Poincaré diagram for the test without feedback on a screen compared
to the test with feedback on a screen indicates that there is a higher consistency in the
CoP signal. This suggests a more regular and predictable postural control strategy in said
condition, related to the user’s natural body sway.

The more dispersed Poincaré plot where the condition without feedback on a screen is
shown suggests greater variability in the CoP signal. This is representative of users actively
controlling their balance, which introduces greater variability in the control strategy as
shown in Figures 19 and 20.



Sensors 2024, 24, 1588 20 of 25
Sensors 2024, 24, 1588 23 of 29 
 

 

 

Figure 17. Comparison of Poincaré diagram of AP positions with and without feedback on a screen 

for user 4. 

  

Figure 17. Comparison of Poincaré diagram of AP positions with and without feedback on a screen
for user 4.
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Figure 18. Comparison of Poincaré diagram of ML positions with and without feedback on a screen
for user 4.
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Figure 19. Comparison of Poincaré diagram ellipse behaviour for different users under different 
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Figure 19. Comparison of Poincaré diagram ellipse behaviour for different users under different
conditions for exercise 5 ([−8◦, +4◦] AP; 10◦/s).
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Figure 20. Comparison of Poincaré diagram ellipse behaviour for different users under different
conditions for exercise 5 ([−4◦, +4◦] ML; 10◦/s).

In the Poincaré diagram, while the SD1 parameter, as shown in Table 10, exhibits
a decrease, it is not significant enough to establish a clear trend. In contrast, a marked
decrease in parameter SD2 was noted, particularly when the visual feedback on a screen
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was removed during the exercises. This reduction indicates a decrease in the long-term
variability in the CoP signal, reflecting a more stable and consistent postural control pattern.
Interestingly, when analysing the SD2 magnitude in relation to the platform rotation
direction, it was found to be higher when the platform was rotated in the ML direction
compared to the AP direction. This suggests that a greater dispersion and variability in
CoPx body sway is exhibited by the users, indicating a freer movement in the ML direction.
These findings further support the theory that the ML direction is perceived as more natural
and familiar by users during balance tasks.

Table 10. SD1 and SD2 (cm) indices with (w) and without (w/o) feedback on a screen.

PoincaréAxis Feedback Amplitude
Angular Speed

(
◦

s

)
2 10 20

SD1

w
[−5,+3] AP 0.05 ± 0.02 0.08 ± 0.03 0.13 ± 0.05
[−8,+4] AP 0.04 ± 0.01 0.08 ± 0.03 0.11 ± 0.04
[−4,+4] ML 0.06 ± 0.03 0.13 ± 0.09 0.20 ± 0.12

w/o
[−5,+3] AP 0.03 ± 0.01 0.07 ± 0.02 0.10 ± 0.03
[−8,+4] AP 0.04 ± 0.01 0.06 ± 0.02 0.10 ± 0.04
[−4,+4] ML 0.05 ± 0.02 0.09 ± 0.04 0.14 ± 0.07

SD2

w
[−5,+3] AP 0.97 ± 0.35 1.04 ± 0.32 1.27 ± 0.41
[−8,+4] AP 1.11 ± 0.44 1.20 ± 0.43 1.33 ± 0.50
[−4,+4] ML 1.28 ± 0.60 1.59 ± 0.79 1.86 ± 0.86

w/o
[−5,+3] AP 0.81 ± 0.42 0.89 ± 0.31 1.04 ± 0.33
[−8,+4] AP 0.93 ± 0.37 0.94 ± 0.37 1.13 ± 0.35
[−4,+4] ML 1.24 ± 0.48 1.24 ± 0.62 1.42 ± 0.55

In the test conditions with lower amplitude rotations, the increase in velocity coupled
with the on-screen visual feedback is significant (p < 0.05), as evidenced in the values for
SD1 in Table 11 for exercises 1, 2, 3, 7, 8, and 9. Similarly, the values of SD2 highlight
a significant increase (p < 0.05) for exercises 2, 3, and 9.

Table 11. Percentage of increase and p-values for the mean values of SD1 and SD2 (cm) with on-screen
feedback with respect to the tests without on-screen feedback.

Poincare
Axis

Amplitude
(◦)

Angular Speed
(

◦

s

)
2 10 20

Increase p Value Increase p Value Increase p Value

SD1
[−5,+3] AP 66.67% 0.0103 14.29% 0.0210 30.00% 0.0265
[−8,+4] AP 0.00% 0.8681 33.33% 0.1600 10.00% 0.1601
[−4,+4] ML 20.00% 0.0369 44.44% 0.0348 42.86% 0.0165

SD2
[−5,+3] AP 19.75% 0.3627 16.85% 0.0270 22.12% 0.0106
[−8,+4] AP 19.35% 0.3632 27.66% 0.3022 17.70% 0.1199
[−4,+4] ML 03.23% 0.7538 28.23% 0.1255 30.99% 0.0125

4. Conclusions

From a general point of view, the data collected from this study provide valuable
insights into the influence of feedback on a screen on postural control strategies. When
feedback on a screen is removed, a notable reduction in overall positions and velocities is
identified, indicating a more adaptive approach to postural control. This response suggests
that users rely on natural adjustments to maintain stability during platform rotations. The
observed decrease in the prediction ellipse area further supports this notion, indicating
a more controlled postural sway without the influence of feedback on a screen.
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More specifically, the statistical analysis indicates that tests conducted with low am-
plitude and high speed, in both ML and AP directions, consistently provide significant
outcomes for the selected CoP indices. This suggests that these test conditions are effective
in identifying measurable changes in postural control with the conditions of on-screen
feedback availability.

Also, it is worth emphasizing that the prototype has enough resolution to find dif-
ferences not only between tests with and without feedback on a screen, but also between
individual participants who, if evaluated by traditional clinical methods, would have
obtained the same balance scores. With these results, a more detailed analysis is needed
to explore the possibilities in terms of the diagnosis and rehabilitation of people with
balance problems.

These findings highlight the importance of considering individual variations when
interpreting the adaptive response of postural control. Further research is warranted to ex-
plore the specific mechanisms underlying these adaptations and their potential implications
for personalized rehabilitation and balance training programs. Understanding how users
adapt their postural control strategies without feedback on a screen can provide valuable
insights into optimizing interventions for improving postural stability and preventing falls.
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