Real-Time Myocardial Infarction Detection Approaches with a Microcontroller-Based Edge-AI Device
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. System Prototype
3.2. Database and Built Dataset
3.3. Method 1: Fourier Intrinsic Band Functions (FIBFs)
3.3.1. Method 1: Data Processing and Feature Extraction
3.3.2. Method 1: Neural Network Design and Training
3.4. Method 2: Spectrogram Analysis
3.4.1. Method 2: Data Processing and Feature Extraction
3.4.2. Method 2: Neural Network Design and Training
4. Results and Discussion
4.1. Evaluation Metrics
4.2. Performance Analysis
4.2.1. Method 1: Performance Analysis
4.2.2. Method 2: Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thygesen, K.; Alpert, J.S.; White, H.D. Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction Universal definition of myocardial infarction. Eur. Hear. J. 2007, 28, 2525–2538. [Google Scholar] [CrossRef]
- Leancă, S.A.; Crișu, D.; Petriș, A.O.; Afrăsânie, I.; Genes, A.; Costache, A.D.; Tesloianu, D.N.; Costache, I.I. Left Ventricular Remodeling after Myocardial Infarction: From Physiopathology to Treatment. Life 2022, 12, 1111. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases (accessed on 12 October 2023).
- The Danger of “Silent” Heart Attacks, Harvard Health. Available online: https://www.health.harvard.edu/heart-health/the-danger-of-silent-heart-attacks (accessed on 24 October 2023).
- Bousseljot, R.-D.; Kreiseler, D.; Schnabel, A. The PTB Diagnostic ECG Database. physionet.org. 2004. Available online: https://doi.org/10.13026/C28C71 (accessed on 28 June 2023).
- Gupta, A.; Huerta, E.; Zhao, Z.; Moussa, I. Deep Learning for Cardiologist-Level Myocardial Infarction Detection in Electrocardiograms. In Proceedings of the 8th European Medical and Biological Engineering Conference, Portorož, Slovenia, 29 November–3 December 2020; Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D., Eds.; IFMBE Proceedings; Springer International Publishing: Cham, Switzerland, 2021; pp. 341–355. [Google Scholar] [CrossRef]
- SmartCardia: 7-Lead ECG Patch for Remote Monitoring, Smartcardia. Available online: https://www.smartcardia.com/ (accessed on 20 January 2024).
- Ansari, S.; Farzaneh, N.; Duda, M.; Horan, K.; Andersson, H.B.; Goldberger, Z.D.; Nallamothu, B.K.; Najarian, K. A Review of Automated Methods for Detection of Myocardial Ischemia and Infarction Using Electrocardiogram and Electronic Health Records. IEEE Rev. Biomed. Eng. 2017, 10, 264–298. [Google Scholar] [CrossRef] [PubMed]
- Koulaouzidis, G.; Jadczyk, T.; Iakovidis, D.K.; Koulaouzidis, A.; Bisnaire, M.; Charisopoulou, D. Artificial Intelligence in Cardiology—A Narrative Review of Current Status. J. Clin. Med. 2022, 11, 3910. [Google Scholar] [CrossRef] [PubMed]
- Neri, L.; Oberdier, M.T.; van Abeelen, K.C.J.; Menghini, L.; Tumarkin, E.; Tripathi, H.; Jaipalli, S.; Orro, A.; Paolocci, N.; Gallelli, I.; et al. Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. Sensors 2023, 23, 4805. [Google Scholar] [CrossRef] [PubMed]
- Correa, R.; Arini, P.D.; Correa, L.S.; Valentinuzzi, M.E.; Laciar, E. New VCG and ECG Indexes for Early Identification of Acute Myocardial Infarction Patients. In Proceedings of the VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina, 29–31 October 2014; Braidot, A., Hadad, A., Eds.; IFMBE Proceedings. Springer International Publishing: Cham, Switzerland, 2015; pp. 369–372. [Google Scholar] [CrossRef]
- Wang, T.; Lu, C.; Sun, Y.; Yang, M.; Liu, C.; Ou, C. Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network. Entropy 2021, 23, 119. [Google Scholar] [CrossRef]
- Seena, V.; Yomas, J. A review on feature extraction and denoising of ECG signal using wavelet transform. In Proceedings of the 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 6–8 March 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Fatimah, B.; Singh, P.; Singhal, A.; Pramanick, D.; Pranav, S.; Pachori, R.B. Efficient detection of myocardial infarction from single lead ECG signal. Biomed. Signal Process. Control. 2021, 68, 102678. [Google Scholar] [CrossRef]
- Bing, P.; Liu, Y.; Liu, W.; Zhou, J.; Zhu, L. Electrocardiogram classification using TSST-based spectrogram and ConViT. Front. Cardiovasc. Med. 2022, 9, 983543. [Google Scholar] [CrossRef]
- Sharma, L.N.; Tripathy, R.K.; Dandapat, S. Multiscale Energy and Eigenspace Approach to Detection and Localization of Myocardial Infarction. IEEE Trans. Biomed. Eng. 2015, 62, 1827–1837. [Google Scholar] [CrossRef]
- Sun, L.; Lu, Y.; Yang, K.; Li, S. ECG Analysis Using Multiple Instance Learning for Myocardial Infarction Detection. IEEE Trans. Biomed. Eng. 2012, 59, 3348–3356. [Google Scholar] [CrossRef]
- Cao, D.; Lin, D.; Lv, Y. ECG codebook model for Myocardial Infarction detection. In Proceedings of the 2014 10th International Conference on Natural Computation (ICNC), Xiamen, China, 19–21 August 2014; pp. 797–801. [Google Scholar] [CrossRef]
- Sraitih, M.; Jabrane, Y.; El Hassani, A.H. A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection. J. Clin. Med. 2022, 11, 4935. [Google Scholar] [CrossRef]
- Xiong, P.; Lee, S.M.-Y.; Chan, G. Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review. Front. Cardiovasc. Med. 2022, 9, 860032. [Google Scholar] [CrossRef]
- Wearable Real-Time Heart Attack Detection and Warning System to Reduce Road Accidents—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/31226858/ (accessed on 28 November 2023).
- Sopic, D.; Aminifar, A.; Atienza, D. Real-time classification technique for early detection and prevention of myocardial infarction on wearable devices. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Sopic, D.; Aminifar, A.; Atienza, D. Real-Time Event-Driven Classification Technique for Early Detection and Prevention of Myocardial Infarction on Wearable Systems. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 982–992. [Google Scholar] [CrossRef]
- Rashid, N.; Demirel, B.U.; Odema, M.; Al Faruque, M.A. Template Matching Based Early Exit CNN for Energy-efficient Myocardial Infarction Detection on Low-power Wearable Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–22. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Oh, S.L.; Adam, M.; Koh, J.E.; Tan, J.H.; Ghista, D.N.; Martis, R.J.; Chua, C.K.; et al. Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads. Knowl.-Based Syst. 2016, 99, 146–156. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Fujita, H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 2017, 415–416, 190–198. [Google Scholar] [CrossRef]
- Rashid, N.; Al Faruque, M.A. Energy-efficient Real-time Myocardial Infarction Detection on Wearable Devices. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4648–4651. [Google Scholar] [CrossRef]
- Wagner, P.; Strodthoff, N.; Bousseljot, R.-D.; Kreiseler, D.; Lunze, F.I.; Samek, W.; Schaeffter, T. PTB-XL, a large publicly available electrocardiography dataset. Sci. Data 2020, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.; Morar, U.; Izquierdo, W.; Cabrerizo, M.; Cabrera, A.; Adjouadi, M. Real-time frequency-independent single-Lead and single-beat myocardial infarction detection. Artif. Intell. Med. 2021, 121, 102179. [Google Scholar] [CrossRef] [PubMed]
- NUCLEO-F401RE—STM32 Nucleo-64 Development Board with STM32F401RE MCU, Supports Arduino and ST Morpho Connectivity—STMicroelectronics. Available online: https://www.st.com/en/evaluation-tools/nucleo-f401re.html (accessed on 23 December 2023).
- SparkFun Single Lead Heart Rate Monitor—AD8232—SEN-12650—SparkFun Electronics. Available online: https://www.sparkfun.com/products/12650 (accessed on 27 December 2023).
- SSD1306-OLED-Display-Datasheet.pdf. Available online: https://components101.com/sites/default/files/component_datasheet/SSD1306-OLED-Display-Datasheet.pdf (accessed on 27 December 2023).
- Arm Cortex-M4—Microcontrollers—STMicroelectronics. Available online: https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m4.html (accessed on 10 May 2023).
- García-González, M.A.; Argelagós-Palau, A.; Fernández-Chimeno, M.; Ramos-Castro, J. Combined Measurement of ECG, Breathing and Seismocardiograms (CEBS Database). physionet.org. 2013. Available online: https://doi.org/10.13026/C2KW23 (accessed on 28 June 2023).
- D1NAMO ECG Glucose Data. Available online: https://www.kaggle.com/datasets/sarabhian/d1namo-ecg-glucose-data (accessed on 28 November 2023).
- Singh, P. Breaking the Limits: Redefining the Instantaneous Frequency. Circuits Syst. Signal Process. 2018, 37, 3515–3536. [Google Scholar] [CrossRef]
- Singh, P.; Joshi, S.D.; Patney, R.K.; Saha, K. The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160871. [Google Scholar] [CrossRef] [PubMed]
- Edge Impulse. Available online: https://edgeimpulse.com/ (accessed on 28 June 2023).
Parameter | Value |
---|---|
Learning rate | |
Number of epochs | 250 |
Validation set size | 20% |
Number of features | 240 |
Layers | Parameters | F. Activation |
---|---|---|
Dense | 128 | swish |
Dropout | 0.3 | |
Dense | 80 | swish |
Dropout | 0.2 |
Parameter | Value |
---|---|
Frame length | 1.4 |
Frame stride | 0.2 |
FFT length | 128 |
Noise floor (dB) | −100 |
Parameter | Value |
---|---|
Learning rate | |
Number of epochs | 400 |
Validation set size | 20% |
Number of features | 1495 |
Layers | Parameters | F. Activation |
---|---|---|
Reshape | input length/23 | |
Conv1D | 128 kernel size = 5 padding = same | swish |
AveragePooling1D | pool size = 2 strides = 2 padding = same | |
Dropout | 0.4 | |
Conv1D | 64 kernel size = 5 padding = same | swish |
AveragePooling1D | pool size = 2 strides = 2 padding = same | |
Dropout | 0.3 | |
Flatten | ||
Dense | 60 | swish |
Dropout | 0.3 | |
Dense | 30 | swish |
Dropout | 0.2 | |
Dense | 20 | swish |
Healthy | Infarcted | Noise | Uncertain | |
---|---|---|---|---|
Healthy | 85.1% | 14.3% | 0% | 0.6% |
Infarcted | 11.9% | 86.8% | 0.3% | 1.0% |
Noise | 0% | 0% | 100% | 0% |
F1 Score | 0.86 | 0.87 | 1 |
Features | Accuracy | F1 Score |
---|---|---|
240 | 88.51 | 0.87 Infarcted 0.85 Healthy 0.97 Noise |
260 | 87.05 | 0.87 Infarcted 0.83 Healthy 0.95 Noise |
280 | 85.48 | 0.85 Infarcted 0.82 Healthy 0.96 Noise |
Features | Accuracy | F1 Score |
---|---|---|
220 | 87.08 | Infarcted 0.87 Healthy 0.84 Noise 0.95 |
260 | 88.56 | Infarcted 0.88 Healthy 0.85 Noise 0.98 |
280 | 87.40 | Infarcted 0.86 Healthy 0.85 Noise 0.97 |
Healthy | Infarcted | Noise | Uncertain | |
---|---|---|---|---|
Healthy | 91.8% | 7.5% | 0% | 0.6% |
Infarcted | 2.4% | 95.1% | 1.4% | 1.1% |
Noise | 0.2% | 0.2% | 99.4% | 0.2% |
F1 Score | 0.94 | 0.94 | 0.98 |
Features | Accuracy | F1 Score |
---|---|---|
1105 | 91.72 | Infarcted 0.90 Healthy 0.88 Noise 0.99 |
1365 | 92.73 | Infarcted 0.92 Healthy 0.90 Noise 0.99 |
3315 | 91.95 | Infarcted 0.91 Healthy 0.89 Noise 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gragnaniello, M.; Borghese, A.; Marrazzo, V.R.; Maresca, L.; Breglio, G.; Irace, A.; Riccio, M. Real-Time Myocardial Infarction Detection Approaches with a Microcontroller-Based Edge-AI Device. Sensors 2024, 24, 828. https://doi.org/10.3390/s24030828
Gragnaniello M, Borghese A, Marrazzo VR, Maresca L, Breglio G, Irace A, Riccio M. Real-Time Myocardial Infarction Detection Approaches with a Microcontroller-Based Edge-AI Device. Sensors. 2024; 24(3):828. https://doi.org/10.3390/s24030828
Chicago/Turabian StyleGragnaniello, Maria, Alessandro Borghese, Vincenzo Romano Marrazzo, Luca Maresca, Giovanni Breglio, Andrea Irace, and Michele Riccio. 2024. "Real-Time Myocardial Infarction Detection Approaches with a Microcontroller-Based Edge-AI Device" Sensors 24, no. 3: 828. https://doi.org/10.3390/s24030828
APA StyleGragnaniello, M., Borghese, A., Marrazzo, V. R., Maresca, L., Breglio, G., Irace, A., & Riccio, M. (2024). Real-Time Myocardial Infarction Detection Approaches with a Microcontroller-Based Edge-AI Device. Sensors, 24(3), 828. https://doi.org/10.3390/s24030828