A Survey on Open Radio Access Networks: Challenges, Research Directions, and Open Source Approaches
Abstract
:1. Introduction
2. Evolution from Traditional RAN to vRAN
2.1. Traditional RAN or D-RAN
2.2. C-RAN
2.3. vRAN
3. Open RAN Movement and the Related Technologies
3.1. Open RAN Movement
3.2. Technologies Related to Open RAN
- SDN and NFV: The deployment of SDN and NFV concept in 5G network can save for about 25% 5G’s TCO. This 25% savings are covered both from RAN and core virtualization. In the future 5G era, NFV will be a potential-generating tool, and maybe people will heavily rely on NFV when using 5G network.
- Automation and intelligence: Automation and intelligence are heavily related to AI. AI in 5G will be expected to save about 25% 5G’s TCO. We already know that AI in 5G has made Open RAN able to do many things, including automation and deploying ML. However, AI applications in cellular telecoms for now, are relatively rare. While this is expected to evolve over time, operators should acknowledge this situation when strategizing for the near future.
- Network slicing: Network slicing will not be a part of a cost-saving element in 5G, but the one that can reduce cost is network sharing. Network sharing can make savings for about 40% TCO.
- Cloudification and open source: The deployment of cloud and open-sourced software in 5G network can save up to 5% 5G’s TCO.
4. Projects, Activities, and Standards Related to Open RAN
4.1. Projects and Activities
- Standard Development Focus Group (SDFG): SDFG is responsible to make the standardization of O-RAN Alliance and to make the main interface to other Standard Development Organizations (SDOs) that will be relevant for the alliance’s work. SDFG also coordinates incoming and outgoing liaison statements.
- Test and Integration Focus Group (TIFG): TIFG’s task is to define O-RAN Alliance’s overall approach for doing tests and integration, including coordination and specifications tests for WGs.
- Open Source Focus Group (OSFG): OSFG is responsible for dealing with open source-related issues for O-RAN Alliance. OSFG is the parents of OSC, which will be explained briefly.
- Industry Engagement Focus Group (IEFG): IEFG is responsible for promoting, accelerating the adoption and innovation of O-RAN-based technology in industry and O-RAN Ecosystem engagement.
- next Generation Research Group (nGRG): nGRG is responsible for researching open and intelligent RAN principles in the 6G system and beyond.
- Sustainability Focus Group (SuFG): SuFG is responsible for creating energy-efficient and environmentally friendly mobile networks.
4.2. 5G, 3GPP, and Open RAN
- NSA Configuration: The NR’s eNBs connect to the gNB through an X2 interface. Another interface used in NSA is S1 interface, connecting eNBs and gNBs to EPC. NSA uses EPC as its CN, and its users can connect both to eNB or gNB to deliver the network.
- SA Configuration: SA enables operation service to be provided solely on the basis of gNB. The gNB connects to other gNBs with Xn interface and connects to the 5G core (5GC) through NG interface. SA uses 5GC as its CN. SA’s UEs will only connect to gNB. CU and DU are parts of gNB.
5. O-RAN Alliance Architecture
5.1. SMO
5.2. Near-RT RIC
5.3. O-CU
5.4. O-DU
5.5. O-RU
5.6. O-eNB
5.7. O-Cloud
5.8. Use Cases
6. Challenges and Future Research Directions
6.1. O-RAN Alliance Architecture Issues
6.2. Open RAN Field Issues
- Operators wanting to adopt the cloud-native Open RAN need to expect the cloud scaling challenges [22]. Scaling the DU virtualization across servers will be a real-time problem. Additional scaling constraints will emerge if MNOs consider the use of accelerators. Furthermore, containerized orchestration alone cannot solve the high network availability and reliability operational goals. The applications will need additional built-in state synchronization and data integrity consideration. Moreover, specific failover and availability mechanisms will be required at the protocol level.
- Most Open RAN enthusiasts assume that the architecture will bring significant economic savings while ignoring the cost of operating the complex architecture [89]. We have explained that a variety of new business roles are involved in the Open RAN ecosystem, such as the system integrator. The question is whether the service expense for these roles and OpEx in a multivendor architecture at a large scale will exceed the cost-saving promised. The total TCO with large-scale operations is still undetermined [22].
- The gap between scalable automation and AI capability is another challenge to be considered [22]. The implementation of AI/ML technologies is relatively new in the telecommunication context. Using AI/ML in telecommunication grade operations will require significant resource expense. While interface standardization is currently available, data access, pipelines, and validation cannot be fully scaled due to a lack of standardized network configuration and performance data exchange. Furthermore, large-scale AI/ML asset deployment and operations by MNOs in live networks are still rare and complicated. To successfully scale and operate AI/ML use cases, harmonization of expertise from telecommunication, data science, and cloud/big-data fields is required [22].
7. Open Source Approaches
7.1. Interoperability and Security Testing
7.2. OSC Community Labs
8. Conclusions
Funding
Conflicts of Interest
Abbreviations
2G | Second Generation |
3G | Third Generation |
3GPP | 3rd Generation Partnership Project |
4G | Fourth Generation |
5G | Fifth Generation |
5GC | 5G Core |
AI | Artificial Intelligence |
API | Application Program Interface |
BBU | Baseband Unit |
BC | Blockchain |
BS | Base Station |
C-RAN | Centralized/Cloud RAN |
CapEx | Capital Expenditure |
CN | Core Network |
COTS | Commercial Off-The-Shelf |
CP | Control Plane |
CPU | Central Processing Unit |
CU | Central Unit |
CUPS | Control Plane and User Plane Splitting |
D-RAN | Distributed RAN |
DL | Downlink |
DU | Distributed Unit |
E2E | End-to-End |
eMBB | enhanced Mobile Broadband |
eNB | evolved Node B |
EPC | Evolved Packet Core |
FG | Focus Group |
FH | Fronthaul |
FHI | FH Interface |
FPGA | Field-Programmable Gate Array |
gNB | Next-generation Node B |
GPU | Graphics Processing Unit |
LF | Linux Foundation |
LTE | Long-Term Evolution |
MANO | Management and Orchestration |
MEC | Mobile Edge Computing |
MIMO | Multiple Input Multiple Output |
ML | Machine Learning |
mMTC | massive Machine Type Communication |
MNO | Mobile Network Operator |
MVP | Minimum Viable Plan |
NFV | Network Function Virtualization |
NIC | Network Interface Card |
NR | New Radio |
NSA | Non-Standalone |
OAI | Open-Air-Interface |
ONAP | Open Network Automation Platform |
ONF | Open Networking Foundation |
OpEx | Operational Expenditure |
OSC | O-RAN Software Community |
OTIC | Open Test and Integration Center |
PNF | Physical Network Function |
QoE | Quality of Experience |
QoS | Quality of Service |
RAN | Radio Access Networks |
RES | Renewable Energy Source |
RIC | RAN Intelligent Controller |
RLDFS | RL-based Dynamic Function Splitting |
RT | Real Time |
RU | Radio Unit |
RRM | Radio Resource Management |
RRU | Remote Radio Unit |
SA | Standalone |
SDN | Software-Defined Networking |
SFG | Security FG |
SMO | Service Management and Orchestration |
SON | Self-Organizing Network |
TIFG | Test and Integration FG |
TIP | Telecom Infra Project |
TCO | Total Cost of Ownership |
UE | User Equipment |
UL | Uplink |
UP | User Plane |
URLLC | Ultra Reliable Low Latency Communications |
vBBU | virtual BBU |
VM | Virtual Machine |
VNF | Virtual Network Function |
vRAN | virtual RAN |
WG | Work Group |
References
- Singh, S.K.; Singh, R.; Kumbhani, B. The Evolution of Radio Access Network towards Open-RAN: Challenges and Opportunities. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Republic of Korea, 6–9 April 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Gavrilovska, L.; Rakovic, V.; Denkovski, D. From Cloud RAN to Open RAN. Wirel. Pers. Commun. 2020, 113, 1523–1539. [Google Scholar] [CrossRef]
- O-RAN ALLIANCE Demos at MWC Shanghai 2023 Display Range of Innovations in Open Radio Access Networks. Available online: https://www.o-ran.org/blog/o-ran-alliance-demos-at-mwc-shanghai-2023-display-range-of-innovations-in-open-radio-access-networks (accessed on 25 October 2023).
- Bonati, L.; Polese, M.; D’Oro, S.; Basagni, S.; Melodia, T. Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road Ahead. Comput. Netw. 2020, 182, 107516. [Google Scholar] [CrossRef]
- Garcia-Saavedra, A.; Costa-Pérez, X. O-RAN: Disrupting the Virtualized RAN Ecosystem. IEEE Commun. Stand. Mag. 2021, 5, 96–103. [Google Scholar] [CrossRef]
- Polese, M.; Bonati, L.; D’Oro, S.; Basagni, S.; Melodia, T. Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges. arXiv 2022, arXiv:2202.01032. [Google Scholar] [CrossRef]
- Abdalla, A.S.; Upadhyaya, P.S.; Shah, V.K.; Marojevic, V. Toward Next Generation Open Radio Access Networks: What O-RAN Can and Cannot Do! IEEE Netw. 2022, 36, 206–213. [Google Scholar] [CrossRef]
- Brik, B.; Boutiba, K.; Ksentini, A. Deep Learning for B5G Open Radio Access Network: Evolution, Survey, Case Studies, and Challenges. IEEE Open J. Commun. Soc. 2022, 3, 228–250. [Google Scholar] [CrossRef]
- Peng, M.; Sun, Y.; Li, X.; Mao, Z.; Wang, C. Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues. IEEE Commun. Surv. Tutor. 2016, 18, 2282–2308. [Google Scholar] [CrossRef]
- Peng, M.; Wang, C.; Lau, V.; Poor, H.V. Fronthaul-constrained cloud radio access networks: Insights and challenges. IEEE Wirel. Commun. 2015, 22, 152–160. [Google Scholar] [CrossRef]
- Bartelt, J.; Rost, P.; Wubben, D.; Lessmann, J.; Melis, B.; Fettweis, G. Fronthaul and backhaul requirements of flexibly centralized radio access networks. IEEE Wirel. Commun. 2015, 22, 105–111. [Google Scholar] [CrossRef]
- Tran, T.X.; Hajisami, A.; Pompili, D. Cooperative Hierarchical Caching in 5G Cloud Radio Access Networks. IEEE Netw. 2017, 31, 35–41. [Google Scholar] [CrossRef]
- de Souza, P.A.; Abdallah, A.S.; Bueno, E.F.; Cardoso, K.V. Virtualized Radio Access Networks: Centralization, Allocation, and Positioning of Resources. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Rost, P.; Berberana, I.; Maeder, A.; Paul, H.; Suryaprakash, V.; Valenti, M.; Wübben, D.; Dekorsy, A.; Fettweis, G. Benefits and challenges of virtualization in 5G radio access networks. IEEE Commun. Mag. 2015, 53, 75–82. [Google Scholar] [CrossRef]
- Kempf, J.; Yegani, P. OpenRAN: A new architecture for mobile wireless Internet radio access networks. IEEE Commun. Mag. 2002, 40, 118–123. [Google Scholar] [CrossRef]
- Everything You Need to Know about Open Ran. Available online: https://www.parallelwireless.com/wp-content/uploads/Parallel-Wireless-e-Book-Everything-You-Need-to-Know-about-Open-RAN.pdf (accessed on 15 July 2023).
- Marsch, P.; Da Silva, I.; Bulakci, O.; Tesanovic, M.; El Ayoubi, S.E.; Rosowski, T.; Kaloxylos, A.; Boldi, M. 5G Radio Access Network Architecture: Design Guidelines and Key Considerations. IEEE Commun. Mag. 2016, 54, 24–32. [Google Scholar] [CrossRef]
- Yang, M.; Li, Y.; Jin, D.; Su, L.; Ma, S.; Zeng, L. OpenRAN: A Software-Defined Ran Architecture via Virtualization. SIGCOMM Comput. Commun. Rev. 2013, 43, 549–550. [Google Scholar] [CrossRef]
- Lin, B.S.P. Toward an AI-Enabled O-RAN-based and SDN/NFV-driven 5G& IoT Network Era. Netw. Commun. Technol. 2021, 6. [Google Scholar] [CrossRef]
- Open Architecture, vs. Open Source in Defence Systems. Available online: https://www.accu.org/conf-docs/PDFs_2007/Hammond-Open_Architecture_vs_Open_Source_in_Defence_Systems.pdf (accessed on 15 July 2023).
- Audit Report: First openRAN Network Japan in International Comparison. Available online: https://www.umlaut.com/uploads/documents/Reports-Certificates/202106_umlaut_Japan_AuditReport.pdf (accessed on 15 July 2023).
- 5G Americas. Transition toward Open & Interoperable Networks; Technical Report; 5G Americas: Bellevue, WA, USA, 2020. [Google Scholar]
- Hodges, J. Disaggregation and the Virtual Network; Technical Report; O-RAN Alliance: Alfter, Germany, 2019. [Google Scholar]
- Sunay, O.; Ansari, S.; Condon, S.; Halterman, J.; Kim, W.; Milkey, R.; Parulkar, G.; Peterson, L.; Rastegarnia, A.; Vachuska, T. SD-RAN, ONF’s Software-Defined RAN Platform Consistent with the O-RAN Architecture; Technical Report; O-RAN Alliance: Alfter, Germany, 2020. [Google Scholar]
- Software-Defined Networking (SDN) Definition. Available online: https://opennetworking.org/sdn-definition/ (accessed on 21 December 2022).
- Dabbagh, M.; Hamdaoui, B.; Guizani, M.; Rayes, A. Software-Defined Networking Security: Pros and Cons. IEEE Commun. Mag. 2015, 53, 73–79. [Google Scholar] [CrossRef]
- Harutyunyan, D.; Riggio, R. Flex5G: Flexible Functional Split in 5G Networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 961–975. [Google Scholar] [CrossRef]
- Maeder, A.; Lalam, M.; De Domenico, A.; Pateromichelakis, E.; Wübben, D.; Bartelt, J.; Fritzsche, R.; Rost, P. Towards a flexible functional split for cloud-RAN networks. In Proceedings of the 2014 European Conference on Networks and Communications (EuCNC), Bologna, Italy, 23–26 June 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Condoluci, M.; Mahmoodi, T. Softwarization and virtualization in 5G mobile networks: Benefits, trends and challenges. Comput. Netw. 2018, 146, 65–84. [Google Scholar] [CrossRef]
- Zhang, S. An Overview of Network Slicing for 5G. IEEE Wirel. Commun. 2019, 26, 111–117. [Google Scholar] [CrossRef]
- Brown, G. TIP openRAN: Toward Disaggregated Mobile Networking; Technical Report; Heavy Reading: New York, NY, USA, 2020; Available online: https://telecominfraproject.com/tip-openran-toward-disaggregated-mobile-networking/ (accessed on 21 December 2022).
- I, C.L.; Kuklinskí, S.; Chen, T. A Perspective of O-RAN Integration with MEC, SON, and Network Slicing in the 5G Era. IEEE Netw. 2020, 34, 3–4. [Google Scholar] [CrossRef]
- Bonati, L.; D’Oro, S.; Polese, M.; Basagni, S.; Melodia, T. Intelligence and Learning in O-RAN for Data-Driven NextG Cellular Networks. IEEE Commun. Mag. 2021, 59, 21–27. [Google Scholar] [CrossRef]
- Enabling Applications to Exploit SmartNICs, FPGAs, and Accelerators. Available online: https://www.openfabrics.org/wp-content/uploads/206_SHeftyVKrishnan.pdf (accessed on 21 October 2023).
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef]
- 5G-Era Mobile Network Cost Evolution. Available online: https://www.gsma.com/futurenetworks/wiki/5g-era-mobile-network-cost-evolution/ (accessed on 21 October 2023).
- About O-RAN Alliance. Available online: https://www.o-ran.org/about (accessed on 19 October 2023).
- Abeta, S.; Kawahara, T.; Umesh, A.; Matsukaw, R. O-RAN Alliance Standardization Trends; Technical Report; NTT DOCOMO: Kyoto, Japan, 2019. [Google Scholar]
- O-RAN Alliance. O-RAN: Towards an Open and Smart RAN; Technical Report; O-RAN Alliance: Alfter, Germany, 2018. [Google Scholar]
- I, C.L. Embracing Open Ecosystem; Technical Report; China Mobile: Beijing, China, 2020. [Google Scholar]
- O-RAN Software Community. Available online: https://www.o-ran.org/software (accessed on 19 October 2023).
- O-RAN Alliance. O-RAN Minimum Viable Plan and Acceleration towards Commercialization; Technical Report; O-RAN Alliance: Alfter, Germany, 2021. [Google Scholar]
- Testing & Integration. Available online: https://www.o-ran.org/testing-integration (accessed on 19 October 2023).
- Advancing Open-RAN: Research, Standards, and Deployment. Available online: https://engagestandards.ieee.org/open-ran-webinar.html#new_tab (accessed on 29 October 2023).
- OAI 5G RAN Project Group. Available online: https://openairinterface.org/oai-5g-ran-project/ (accessed on 29 October 2023).
- Nikaein, N.; Knopp, R.; Kaltenberger, F.; Gauthier, L.; Bonnet, C.; Nussbaum, D.; Ghaddab, R. Demo: OpenAirInterface: An Open LTE Network in a PC. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking (MobiCom’14), New York, NY, USA, 7–11 September 2014; pp. 305–308. [Google Scholar] [CrossRef]
- Nikaein, N.; Marina, M.K.; Manickam, S.; Dawson, A.; Knopp, R.; Bonnet, C. OpenAirInterface: A Flexible Platform for 5G Research. SIGCOMM Comput. Commun. Rev. 2014, 44, 33–38. [Google Scholar] [CrossRef]
- The srsLTE Project Is Evolving. Available online: https://www.srslte.com/srslte-srsran (accessed on 7 April 2023).
- ONAP 5G Blueprint Overview. Available online: www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_CaseSolution_5G_112118FNL.pdf (accessed on 7 April 2023).
- Wong, I.C.; Chopra, A.; Rajagopal, S.; Jana, R. Open Ran: The Definitive Guide; Wiley-IEEE Press: New York, NY, USA, 2023. [Google Scholar]
- Our Mission. Available online: https://opennetworking.org/mission/ (accessed on 30 December 2021).
- SD-RAN. Available online: https://opennetworking.org/sd-ran/ (accessed on 30 December 2021).
- COLOSSEUM. Available online: https://www.northeastern.edu/colosseum/ (accessed on 30 December 2021).
- About 3GPP. Available online: https://www.3gpp.org/about-3gpp (accessed on 30 March 2022).
- Minokuchi, A.; Isobe, S.; Takahashi, H.; Nagata, S. 5G Standardization Trends at 3GPP; Technical Report; NTT DOCOMO: Kyoto, Japan, 2018. [Google Scholar]
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Umesh, A.; Hapsari, W.A.; Uchino, T.; Toeda, T.; Takahashi, H. 5G Radio Access Network Standardization Trends; Technical Report; NTT DOCOMO: Kyoto, Japan, 2018. [Google Scholar]
- O-RAN Alliance. O-RAN Working Group 1 (Use Cases and Overall Architecture), O-RAN Architecture Description; Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- O-RAN Alliance. O-RAN Working Group 10 (Operations and Maintenance Architecture); Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- O-RAN Alliance. O-RAN Working Group 3 (Near-RT RIC Architecture); Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- Bimo, F.A.; Cheng, R.G.; Tseng, C.C.; Chiang, C.R.; Huang, C.H.; Lin, X.W. Design and Implementation of Next-generation Research Platforms. In Proceedings of the 2023 IEEE Globecom Workshop on FutureG Experimental Test Platforms for Advanced Systems Implementation and Research, Kuala Lumpur, Malaysia, 4–8 December 2023. [Google Scholar]
- O-RAN Alliance. O-RAN Working Group 8 (Base Station O-DU and O-CU Software Architecture and APIs); Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- O-RAN Alliance. O-RAN Working Group 4 (O-RAN Fronthaul Working Group, Control, User and Synchronization Plane Specification); Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- Umesh, A.; Yajima, T.; Uchino, T.; Okuyama, S. Overview of O-RAN Fronthaul Specifications; Technical Report; NTT DOCOMO: Kyoto, Japan, 2019. [Google Scholar]
- Larsen, L.M.P.; Checko, A.; Christiansen, H.L. A Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks. IEEE Commun. Surv. Tutor. 2019, 21, 146–172. [Google Scholar] [CrossRef]
- Mohsin, M.; Batalla, J.M.; Pallis, E.; Mastorakis, G.; Markakis, E.K.; Mavromoustakis, C.X. On Analyzing Beamforming Implementation in O-RAN 5G. Electronics 2021, 10, 2162. [Google Scholar] [CrossRef]
- O-RAN Use Cases: Traffic Steering. Available online: https://rimedolabs.com/blog/o-ran-use-cases-traffic-steering/ (accessed on 25 October 2023).
- O-RAN Alliance. O-RAN Use Cases and Deployment Scenarios); Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- Kumar, H.; Sapru, V.; Jaisawal, S.K. O-RAN based proactive ANR optimization. In Proceedings of the 2020 IEEE Globecom Workshops, Taipei, Taiwan, 7–11 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- D’Oro, S.; Bonati, L.; Polese, M.; Melodia, T. OrchestRAN: Network Automation through Orchestrated Intelligence in the Open RAN. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, Virtual, 2–5 May 2022; pp. 270–279. [Google Scholar] [CrossRef]
- Niknam, S.; Roy, A.; Dhillon, H.S.; Singh, S.; Banerji, R.; Reed, J.H.; Saxena, N.; Yoon, S. Intelligent O-RAN for Beyond 5G and 6G Wireless Networks. arXiv 2020, arXiv:2005.08374. [Google Scholar]
- Lee, H.; Cha, J.; Kwon, D.; Jeong, M.; Park, I. Hosting AI/ML Workflows on O-RAN RIC Platform. In Proceedings of the 2020 IEEE Globecom Workshops, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Schmidt, R.; Irazabal, M.; Nikaein, N. FlexRIC: An SDK for next-Generation SD-RANs. In Proceedings of the 17th International Conference on Emerging Networking EXperiments and Technologies (CoNEXT’21), Munich, Germany, 7–10 December 2021; pp. 411–425. [Google Scholar] [CrossRef]
- Huff, A.; Hiltunen, M.; Duarte, E.P. RFT: Scalable and Fault-Tolerant Microservices for the O-RAN Control Plane. In Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 17–21 May 2021; pp. 402–409. [Google Scholar]
- Johnson, D.; Maas, D.; Van Der Merwe, J. NexRAN: Closed-Loop RAN Slicing in POWDER -A Top-to-Bottom Open-Source Open-RAN Use Case. In Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental Evaluation & CHaracterization (WiNTECH ’21), New Orleans, LO, USA, 1 April 2021; pp. 17–23. [Google Scholar] [CrossRef]
- Mungari, F. An RL Approach for Radio Resource Management in the O-RAN Architecture. In Proceedings of the 2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Virtual, 6–9 July 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Xilinx. Xilinx 5G Telco Accelerator Cards; Technical Report; Xilinx: San Jose, CA, USA, 2020. [Google Scholar]
- The Total Economic Impact of Arm Neoverse. Available online: https://armkeil.blob.core.windows.net/developer/Files/pdf/report/tei-arm-neoverse.pdf (accessed on 30 March 2020).
- Wang, X.; Thomas, J.D.; Piechocki, R.J.; Kapoor, S.; Santos-Rodríguez, R.; Parekh, A. Self-play learning strategies for resource assignment in Open-RAN networks. Comput. Netw. 2022, 206, 108682. [Google Scholar] [CrossRef]
- Lee, J.S.; Park, J.; Choi, J.; Lee, M.S. Design of a Management Plane for 5G Open Fronthaul Interface. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 21–23 October 2020; pp. 946–948. [Google Scholar] [CrossRef]
- O-RAN Alliance. O-RAN Alliance Working Group 4, Management Plane Specification; Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- O-RAN Alliance. O-RAN Alliance Working Group 4, O-RAN Management Plane Specification—YANG Models; Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- Fumagalli, A. Comments in Response to “5G Challenge Notice of Inquiry”; Technical Report; The University of Texas at Dallas: Dallas, TX, USA, 2021. [Google Scholar]
- Cho, J.Y.; Sergeev, A. Secure Open Fronthaul Interface for 5G Networks. In Proceedings of the 16th International Conference on Availability, Reliability and Security (ARES’21), Vienna, Austria, 17–20 August 2021. [Google Scholar] [CrossRef]
- Sarikaya, E.; Onur, E. Placement of 5G RAN Slices in Multi-tier O-RAN 5G Networks with Flexible Functional Splits. In Proceedings of the 2021 17th International Conference on Network and Service Management (CNSM), Izmir, Turkey, 25–29 October 2021; pp. 274–282. [Google Scholar] [CrossRef]
- Rodoshi, R.T.; Kim, T.; Choi, W. Resource Management in Cloud Radio Access Network: Conventional and New Approaches. Sensors 2020, 20, 2708. [Google Scholar] [CrossRef]
- Tamim, I.; Saci, A.; Jammal, M.; Shami, A. Downtime-Aware O-RAN VNF Deployment Strategy for Optimized Self-Healing in the O-Cloud. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Migration Choices and Dilemmas in vRAN and Open RAN. Available online: https://rethinkresearch.biz/reports-category/ran-research/#migration-choices-and-dilemmas-in-vran-and-open-ran (accessed on 29 December 2021).
- Open and Virtualised Radio Access Networks: An Explanatory Guide for Policymakers. Available online: https://www.gsma.com/publicpolicy/resources/open-and-virtualised-radio-access-networks-an-explanatory-guide (accessed on 30 December 2021).
- Who’s Winning in Open RAN? Available online: https://appledoreresearch.com/2021/06/10/whos-winning-in-open-ran/ (accessed on 30 December 2021).
- Polese, M.; Bonati, L.; D’Oro, S.; Basagni, S.; Melodia, T. ColO-RAN: Developing Machine Learning-Based xApps for Open RAN Closed-Loop Control on Programmable Experimental Platforms. IEEE Trans. Mob. Comput. 2023, 22, 5787–5800. [Google Scholar] [CrossRef]
- Ravindran, S.; Chaudhuri, S.; Bapat, J.; Das, D. Predictive Dynamic Scaling Multi-Slice-in-Slice-Connected Users for 5G System Resource Scheduling. arXiv 2021, arXiv:2106.15229. [Google Scholar]
- Giannopoulos, A.; Spantideas, S.; Kapsalis, N.; Gkonis, P.; Sarakis, L.; Capsalis, C.; Vecchio, M.; Trakadas, P. Supporting Intelligence in Disaggregated Open Radio Access Networks: Architectural Principles, AI/ML Workflow, and Use Cases. IEEE Access 2022, 10, 39580–39595. [Google Scholar] [CrossRef]
- Santos, J.F.; Liu, W.; Jiao, X.; Neto, N.V.; Pollin, S.; Marquez-Barja, J.M.; Moerman, I.; DaSilva, L.A. Breaking Down Network Slicing: Hierarchical Orchestration of End-to-End Networks. IEEE Commun. Mag. 2020, 58, 16–22. [Google Scholar] [CrossRef]
- Bertizzolo, L.; Tran, T.X.; Buczek, J.; Balasubramanian, B.; Jana, R.; Zhou, Y.; Melodia, T. Streaming from the Air: Enabling Drone-sourced Video Streaming Applications on 5G Open-RAN Architectures. arXiv 2021, arXiv:2101.0868. [Google Scholar] [CrossRef]
- Mughees, A.; Tahir, M.; Sheikh, M.A.; Ahad, A. Towards Energy Efficient 5G Networks Using Machine Learning: Taxonomy, Research Challenges, and Future Research Directions. IEEE Access 2020, 8, 187498–187522. [Google Scholar] [CrossRef]
- Pamuklu, T.; Erol-Kantarci, M.; Ersoy, C. Reinforcement Learning Based Dynamic Function Splitting in Disaggregated Green Open RANs. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Peng, M.; Yan, S.; Zhang, K.; Wang, C. Fog-computing-based radio access networks: Issues and challenges. IEEE Netw. 2016, 30, 46–53. [Google Scholar] [CrossRef]
- Cheng, N.; Xu, W.; Shi, W.; Zhou, Y.; Lu, N.; Zhou, H.; Shen, X. Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges, and Opportunities. IEEE Commun. Mag. 2018, 56, 26–32. [Google Scholar] [CrossRef]
- Masaracchia, A.; Sharma, V.; Fahim, M.; Dobre, O.A.; Duong, T.Q. Digital Twin for Open RAN: Toward Intelligent and Resilient 6G Radio Access Networks. IEEE Commun. Mag. 2023, 61, 112–118. [Google Scholar] [CrossRef]
- Morais, F.Z.; de Almeida, G.M.F.; Pinto, L.; Cardoso, K.V.; Contreras, L.M.; Righi, R.d.R.; Both, C.B. PlaceRAN: Optimal Placement of Virtualized Network Functions in Beyond 5G Radio Access Networks. IEEE Trans. Mob. Comput. 2023, 22, 5434–5448. [Google Scholar] [CrossRef]
- Poretsky, S.; Jardal, J. Security Considerations of Cloud RAN; Technical Report; Ericsson: Stockholm, Sweden, 2021. [Google Scholar]
- Suraci, C.; Araniti, G.; Abrardo, A.; Bianchi, G.; Iera, A. A stakeholder-oriented security analysis in virtualized 5G cellular networks. Comput. Netw. 2021, 184, 107604. [Google Scholar] [CrossRef]
- O-RAN Alliance. O-RAN Security Threat Modeling and Remediation Analysis; Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- Sullivan, S.; Brighente, A.; Kumar, S.A.P.; Conti, M. 5G Security Challenges and Solutions: A Review by OSI Layers. IEEE Access 2021, 9, 116294–116314. [Google Scholar] [CrossRef]
- Rahman, T.F.; Abdalla, A.S.; Powell, K.; AlQwider, W.; Marojevic, V. Network and Physical Layer Attacks and countermeasures to AI-Enabled 6G O-RAN. arXiv 2022, arXiv:2106.02494. [Google Scholar]
- Cowan, C. Software security for open-source systems. IEEE Secur. Priv. 2003, 1, 38–45. [Google Scholar] [CrossRef]
- O-RAN Alliance. O-RAN Security Protocols Specifications; Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- O-RAN Alliance. O-RAN Security Requirements Specification; Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- Zhang, S.; Wang, Y.; Zhou, W. Towards secure 5G networks: A Survey. Comput. Netw. 2019, 162, 106871. [Google Scholar] [CrossRef]
- Mathew, A. Network Slicing in 5G and the Security Concerns. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 75–78. [Google Scholar] [CrossRef]
- Mimran, D.; Bitton, R.; Kfir, Y.; Klevansky, E.; Brodt, O.; Lehmann, H.; Elovici, Y.; Shabtai, A. Evaluating the Security of Open Radio Access Networks. arXiv 2022, arXiv:2201.06080. [Google Scholar]
- O-RAN Alliance. O-RAN End-to-End Test Specification; Technical Report; O-RAN Alliance: Alfter, Germany, 2023. [Google Scholar]
- Khan, S.; Parkinson, S.; Qin, Y. Fog Computing Security: A Review of Current Applications and Security Solutions. J. Cloud Comput. 2017, 6, 19. [Google Scholar] [CrossRef]
- Mavenir. Security in Open RAN; Technical Report; Mavenir: Richardson, TX, USA, 2021. [Google Scholar]
- Ramezanpour, K.; Jagannath, J. Intelligent Zero Trust Architecture for 5G/6G Networks: Principles, Challenges, and the Role of Machine Learning in the context of O-RAN. arXiv 2022, arXiv:2105.01478. [Google Scholar] [CrossRef]
- Ling, X.; Wang, J.; Bouchoucha, T.; Levy, B.C.; Ding, Z. Blockchain Radio Access Network (B-RAN): Towards Decentralized Secure Radio Access Paradigm. IEEE Access 2019, 7, 9714–9723. [Google Scholar] [CrossRef]
- Giupponi, L.; Wilhelmi, F. Blockchain-Enabled Network Sharing for O-RAN in 5G and Beyond. Netwrk. Mag. Glob. Internetwkg. 2022, 36, 218–225. [Google Scholar] [CrossRef]
- Open Mobile Evolved Core. Available online: https://opennetworking.org/omec/ (accessed on 1 August 2022).
- Home. Available online: https://magmacore.org/ (accessed on 1 August 2022).
- Home. Available online: https://www.free5gc.org/ (accessed on 1 August 2022).
- Home. Available online: https://www.open5gs.org/ (accessed on 1 August 2022).
- IEEE Standards Association. Open RAN (Radio Access Network) Initiative Industry Connections Activity Initiation Document (ICAID); Technical Report; IEEE Standards Association: Piscataway, NJ, USA, 2021. [Google Scholar]
- Kazemifard, N.; Shah-Mansouri, V. Minimum delay function placement and resource allocation for Open RAN (O-RAN) 5G networks. Comput. Netw. 2021, 188, 107809. [Google Scholar] [CrossRef]
- Papathanail, G.; Pentelas, A.; Fotoglou, I.; Papadimitriou, P.; Katsaros, K.V.; Theodorou, V.; Soursos, S.; Spatharakis, D.; Dimolitsas, I.; Avgeris, M.; et al. MESON: Optimized Cross-Slice Communication for Edge Computing. IEEE Commun. Mag. 2020, 58, 23–28. [Google Scholar] [CrossRef]
- Rivera, P.E.I.; Mollahasani, S.; Erol-Kantarci, M. Multi Agent Team Learning in Disaggregated Virtualized Open Radio Access Networks (O-RAN). arXiv 2021, arXiv:2012.04861. [Google Scholar]
- OAI MOSAIC5G (M5G) PROJECT GROUP–CHARTER. Available online: https://www.openairinterface.org/docs/OAI-M5G-Project-Group-Charter.pdf (accessed on 1 October 2023).
- Pongratz, S. The Market Upside with Open RAN; Technical Report; Dell’Oro Group: Kyoto, Japan, 2021. [Google Scholar]
- Plantin, J.C. The geopolitical hijacking of open networking: The case of Open RAN. Eur. J. Commun. 2021, 36, 404–417. [Google Scholar] [CrossRef]
- Wang, C.X.; Renzo, M.D.; Stanczak, S.; Wang, S.; Larsson, E.G. Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges. IEEE Wirel. Commun. 2020, 27, 16–23. [Google Scholar] [CrossRef]
- Rinaldi, F.; Maattanen, H.L.; Torsner, J.; Pizzi, S.; Andreev, S.; Iera, A.; Koucheryavy, Y.; Araniti, G. Non-Terrestrial Networks in 5G & Beyond: A Survey. IEEE Access 2020, 8, 165178–165200. [Google Scholar] [CrossRef]
- Liu, W.; Ding, J.; Zheng, J.; Chen, X.; I, C.L. Relay-Assisted Technology in Optical Wireless Communications: A Survey. IEEE Access 2020, 8, 194384–194409. [Google Scholar] [CrossRef]
- Khorov, E.; Kiryanov, A.; Lyakhov, A.; Bianchi, G. A Tutorial on IEEE 802.11ax High Efficiency WLANs. IEEE Commun. Surv. Tutor. 2019, 21, 197–216. [Google Scholar] [CrossRef]
- Bonati, L.; Polese, M.; D’Oro, S.; Basagni, S.; Melodia, T. OpenRAN Gym: An Open Toolbox for Data Collection and Experimentation with AI in O-RAN. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 518–523. [Google Scholar] [CrossRef]
- About. Available online: https://bubbleran.com/about/ (accessed on 25 July 2022).
- Bimo, F.A.; Feliana, F.; Liao, S.H.; Lin, C.W.; Kinsey, D.F.; Li, J.; Jana, R.; Wright, R.; Cheng, R.G. OSC Community Lab: The Integration Test Bed for O-RAN Software Community. In Proceedings of the 2022 IEEE Future Networks World Forum (FNWF), Montreal, QC, Canada, 12–14 October 2022; pp. 513–518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azariah, W.; Bimo, F.A.; Lin, C.-W.; Cheng, R.-G.; Nikaein, N.; Jana, R. A Survey on Open Radio Access Networks: Challenges, Research Directions, and Open Source Approaches. Sensors 2024, 24, 1038. https://doi.org/10.3390/s24031038
Azariah W, Bimo FA, Lin C-W, Cheng R-G, Nikaein N, Jana R. A Survey on Open Radio Access Networks: Challenges, Research Directions, and Open Source Approaches. Sensors. 2024; 24(3):1038. https://doi.org/10.3390/s24031038
Chicago/Turabian StyleAzariah, Wilfrid, Fransiscus Asisi Bimo, Chih-Wei Lin, Ray-Guang Cheng, Navid Nikaein, and Rittwik Jana. 2024. "A Survey on Open Radio Access Networks: Challenges, Research Directions, and Open Source Approaches" Sensors 24, no. 3: 1038. https://doi.org/10.3390/s24031038