Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials
Abstract
:1. Introduction
2. Materials for MEMS Gas Sensors
2.1. Metallic Material
2.2. Metal Oxide Semiconductor Materials
2.3. Carbon-Based Material
2.4. Silicon-Based Material
2.5. Polymer Material
2.6. Metal–Organic Framework Material
3. Hydrogen Sensors
Sensitive Material Category | Sensitive Material | Fabrication Technique | Working Temperature (°C) | Detection Range (ppm) | Response Time (s) | Recovery Time (s) | Sensitivity | Ref. |
---|---|---|---|---|---|---|---|---|
Metal | Pt | Sputter technique | 30–200 | 1000–10,000 | N/a | N/a | 3.4@1000 ppm d | [9] |
Metal | Pd | Polyimide-based microfabrication process | 25–85 | 5000–40,000 | <5 | N/a | N/a | [10] |
Alloy | Pd/Au | Direct current (DC) magnetron SD | 60 | 5–30,000 | 22 | 160 | 3.3%@30,000 ppm c | [11] |
Alloy | Pd/Mg | DC magnetron sputtering | 100 | N/a | 1 | 60 | N/a | [12] |
Alloy | Pd/Ni | E-beam evaporation | 25 | 80–5000 | 84 | 96 | 7.1%@5000 ppm c | [13] |
MG | Pd78Cu5Si17 | Multi-target sputtering | Room temperature | 0.05–40,000 | 2.1 | N/a | N/a | [14,15] |
CBM | Pd/CNT | Electrochemical deposition process | Room temperature | 30 | 3 | N/a | 75%@500 ppm c | [16] |
Metal/CBM | Pd cluster/graphene electrodes | Electrodeposition method | Room temperature | N/a | N/a | N/a | N/a | [17] |
SBM | Pd/SiNM | E-beam evaporation | Room temperature | 50–5000 | 22 | N/a | 764%@500 ppm c | [7] |
SBM | Pd/Si nanomesh | Nanosphere lithography | Room temperature | 1000–10,000 | 5 | 13 | 27%@10,000 ppm c | [18] |
SBM | 3C–SiC | CVD | Room temperature | 2000–20,000 | N/a | N/a | N/a | [19] |
SBM | Pd/SiNW | E-beam evaporation | Room temperature | 100–1000 | N/a | N/a | 154.5%@1000 ppm c | [20] |
MOS | SnO2 with defects | Drop sintered | 250 | 0.1–6 | 7 | 12 | 2.3@6 ppm a | [21] |
MOS | WO3 | Radio frequency (RF) magnetron method | 20–350 | 5–1000 | 120–180 | 120–180 | 1300@1000 ppm a | [22] |
MOS | Ammonia plasma modification ZnO-NWs | Sputter technique | Room temperature | 500–2500 | N/a | N/a | 27%@2500 ppm c | [23] |
Metal/MOS | Pd/ZnO-NRs | Sol–gel technology | Room temperature | 0.2–1000 | 18.8 | N/a | 91%@1000 ppm c | [24] |
Metal/MOS | Pd nanotube/ZnO | Low-temperature, wet-chemical process/hydrothermal method | Room temperature | N/a | N/a | N/a | 1500%@1000 ppm c | [25] |
Metal/MOS | Pt/TiO2 | Calcining method | 500–800 | N/a | 0.04 (H2) 0.02 (O2) | N/a | N/a | [26] |
Metal/MOS | Pt/Nb/TiO2 | Electrostatic microspray method | 40 | 200–1000 | 31 | 270 | 12.3@1000 ppm a | [27] |
Metal/MOS | Pd/SnO2 thin films | Sol–gel method | 75 | 150–1000 | 182 | 108.9 | 165@1000 ppm a | [28] |
MOS/MOS | MOF-derived WO3-C/In2O3 | Drop coating | 250 | 5–2000 | 1.9 | 9.2 | 10.11@1000 ppm a | [29] |
MOS/metal/MOF | ZnO/Pd/ZIF-8 nanowires | N/a | 200 | 10–50 | N/a | 8.33 | 6.2@50 ppm b | [30] |
3.1. Metallic Material
3.1.1. Metal
3.1.2. Alloy
3.1.3. Metallic Glass
3.2. MOS Material
3.2.1. MOS
3.2.2. Metal/MOS
3.2.3. MOS/MOS
3.3. Carbon-Based Material
3.4. Silicon-Based Material
3.5. MOF Material
4. Carbon Monoxide Sensors
Sensitive Material Category | Sensitive Material | Fabrication Technique | Working Temperature (°C) | Detection Range (ppm) | Response Time (s) | Recovery Time (s) | Sensitivity | Ref. |
---|---|---|---|---|---|---|---|---|
MOS | TiO2 nanoparticle | Drop-coating method | 500 | 1–75 | 30–60 | 550 | N/a | [33] |
MOS | Nanocrystalline SnO2 | Sol–gel synthesis method | 450 | N/a | 106 | 114 | N/a | [34] |
Metal/MOS | Al/TiO2 nanopowder | Combustion method | 600 | 100–500 | N/a | N/a | N/a | [35] |
Metal/MOS | Pt/SnO2 nanoparticle | In situ deposition | 350 | 8–50 | N/a | N/a | N/a | [36] |
Metal/MOS | Al/ZnO | Sol–gel technique | 300 | 50 | 7 | 30 | 1.6@50 ppm b | [37] |
Metal/MOS | Ca/ZnO thin-film-coated langasite lanthanum gallium (LGS) | Spin coated | 400 | 1000 | 87 | 132 | 2.469 kHz/ppm d | [38] |
CBM | SW-defect graphene | Drop coating | Room temperature | N/a | N/a | N/a | 35.25% c | [39] |
Polymer | Ferrocene–chitosan | Drop-casting method | Room temperature | 0–2000 | 38 | 64 | 108.85 Hz/ppm d | [40] |
Polymer | Cryptophane-A | Electrospray method | 80 | N/a | N/a | N/a | 0.004 Hz/ppm d | [41] |
Metal/polymer | Fe-Al-doped PANI thin film | Vacuum deposition | Room temperature | 10–150 | 5 | 10 | 800@150 ppm a | [42] |
Metal/polymer | PDPP4T-T-Pd (II) | Air–water interface coordination reactions of thymine groups with ions | Room temperature | 0.01–100 | N/a | N/a | N/a | [43] |
Polymer/polymer | Poly (styrenesulfonate)/polyvinylpyrrolidone (PEDOT/PSS/PVP) | Traditional electrospinning | Room temperature | 50 | N/a | N/a | −54 Hz/ppm d | [44] |
4.1. MOS Material
4.1.1. MOS
4.1.2. Metal/MOS
4.2. Carbon-Based Material
4.3. Polymer Material
4.3.1. Polymer
4.3.2. Metal/Polymer
4.3.3. Polymer/Polymer
5. Nitrogen Dioxide Sensors
5.1. MOS Material
5.1.1. MOS
5.1.2. Metal/MOS
5.1.3. MOS/MOS
5.2. Carbon-Based Material
5.3. Polymer Material
5.4. MOF Material
6. Hydrogen Sulfide Sensors
6.1. MOS Material
6.1.1. MOS
6.1.2. Metal/MOS
6.1.3. MOS/MOS
6.2. Polymer Material
6.3. Carbon-Based Material
7. Ammonia Sensors
7.1. MOS Material
7.1.1. MOS
7.1.2. MOS/MOS
7.2. Carbon-Based Material
7.3. Polymer Material
7.4. Other Material
8. Conclusions and Prospect
- (1)
- The existing gas sensors often have a high response temperature, poor response, and low sensitivity at low temperatures, which limits their application. Therefore, advanced nanomaterials and 2D materials need to be explored to ensure increased sensitivity and selectivity while reducing response temperature.
- (2)
- Some metal oxide semiconductor materials and the noble metal materials used for modification are expensive, and their large-scale production is difficult to achieve. Appropriate MOS-based materials could be used for combination and preparation to reduce costs. In addition, it is necessary to pay attention to the development of low-cost manufacturing technology to further promote the industrialization of MEMS gas sensors.
- (3)
- If the size of an MEMS device can be further reduced while its performance is improved, a wider range of applications in the chip can be achieved, while costs can be reduced and production can be expanded, which also requires the development of new devices and substrate materials.
- (4)
- MEMS sensors can be integrated with IoT systems and intelligent technologies to achieve a wider range of applications. Some flexible MEMS can also be used to prepare wearable devices to achieve improved convenience.
- (5)
- In order to achieve the purpose of environmental protection, energy-saving sensors using self-powered systems can be focused on in the future. In addition, more environmentally sustainable and biocompatible materials can be considered for the development of MEMS sensors.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Yang, J.; Chen, D.; Jin, L.; Zhang, Y.; Xu, L.; Guo, Y.; Lin, F.; Wu, F. Gas detection microsystem with MEMS gas sensor and integrated circuit. IEEE Sens. J. 2018, 18, 6765–6773. [Google Scholar] [CrossRef]
- Hashwan, S.S.B.; Khir, M.H.M.; Nawi, I.M.; Ahmad, M.R.; Hanif, M.; Zahoor, F.; Al-Douri, Y.; Algamili, A.S.; Bature, U.I.; Alabsi, S.S.; et al. A review of piezoelectric MEMS sensors and actuators for gas detection application. Discov. Nano 2023, 18, 25–67. [Google Scholar] [CrossRef] [PubMed]
- Algamili, A.S.; Khir, M.H.M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Hashwan, S.S.B.; Junaid, M.M. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Asri, M.I.A.; Hasan, M.N.; Fuaad, M.R.A.; Yunos, Y.M.; Ali, M.S.M. MEMS gas sensors: A review. IEEE Sens. J. 2021, 99, 18381–18397. [Google Scholar] [CrossRef]
- Shwetha, H.R.; Sharath, S.M.; Guruprasad, B.; Rudraswamy, S.B. MEMS based metal oxide semiconductor carbon dioxide gas sensor. Micro Nano Eng. 2022, 16, 100156. [Google Scholar] [CrossRef]
- Tang, S.; Chen, W.; Jin, L.; Zhang, H.; Li, Y.; Wen, Z. SWCNTs-based MEMS gas sensor array and its pattern recognition based on deep belief networks of gases detection in oil-immersed transformers. Sens. Actuators B 2020, 312, 127998. [Google Scholar] [CrossRef]
- Cho, M.; Yun, J.; Kwon, D.; Kim, K.; Park, I. High-sensitivity and low-power flexible Schottky hydrogen sensor based on silicon nanomembrane. ACS Appl. Mater. Interfaces 2018, 10, 12870. [Google Scholar] [CrossRef]
- Demir, H.; Daglar, H.; Gulbalkan, H.C.; Aksu, G.O.; Keskin, S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord. Chem. Rev. 2023, 484, 215112. [Google Scholar] [CrossRef]
- Sennik, E.; Urdem, S.; Erkovan, M.; Kilinc, N. Sputtered platinum thin films for resistive hydrogen sensor application. Mater. Lett. 2016, 177, 104–107. [Google Scholar] [CrossRef]
- Walewyns, T.; Spirito, D.; Francis, L.A. A tunable palladium-based capacitive MEMS hydrogen sensor performing high dynamics, high selectivity and ultra-low power sensing. Transducers 2015, 87, 268–271. [Google Scholar] [CrossRef]
- Gong, J.; Wang, Z.; Tang, Y.; Sun, J.; Wei, X.; Zhang, Q.; Tian, G.; Wang, H. MEMS-based resistive hydrogen sensor with high performance using a palladium-gold alloy thin film. J. Alloys Compd. 2023, 930, 167398. [Google Scholar] [CrossRef]
- Sanger, A.; Kumar, A.; Chauhan, S.; Gautam, Y.K.; Chandra, R. Fast and reversible hydrogen sensing properties of Pd/Mg thin film modified by hydrophobic porous silicon substrate. Sens. Actuators B 2015, 213, 252–260. [Google Scholar] [CrossRef]
- Kondalkar, V.V.; Park, J.; Lee, K. MEMS hydrogen gas sensor for in-situ monitoring of hydrogen gas in transformer oil. Sens. Actuators B 2021, 326, 128989. [Google Scholar] [CrossRef]
- Yamazaki, H.; Hayashi, Y.; Masunishi, K.; Ono, D.; Ikehashi, T. A review of capacitive MEMS hydrogen sensor using Pd based metallic glass with fast response and low power consumption. Electr. Commun. Jpn. 2019, 138, 312–318. [Google Scholar] [CrossRef]
- Hayashi, Y.; Yamazaki, H.; Ono, D.; Masunishi, K.; Ikehashi, T. Investigation of PdCuSi metallic glass film for hysteresis-free and fast response capacitive MEMS hydrogen sensors. Int. J. Hydrogen Energy 2018, 43, 9438–9445. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Hau, H. Electrodeposition of Pd nanoparticles on Single-walled Carbon Nanotubes for Flexible Hydrogen Sensors. Appl. Phys. Lett. 2007, 90, 213107. [Google Scholar] [CrossRef]
- Shin, D.H.; Lee, J.S.; Jun, J.; An, J.H.; Kim, S.G.; Cho, K.H.; Jang, J. Flower-like Palladium Nanoclusters Decorated Graphene Electrodes for Ultrasensitive and Flexible Hydrogen Gas Sensing. Sci. Rep. 2015, 5, 12294. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Cho, M.; Han, H.; Jung, Y.; Park, I. Palladium-Decorated Silicon Nanomesh Fabricated by Nanosphere Lithography for High Performance, Room Temperature Hydrogen Sensing. Small 2018, 14, 170391. [Google Scholar]
- Michaud, J.; Portail, M.; Alquier, D.; Certon, D.; Dufour, I. Silicon-carbide-based MEMS for gas detection applications. Mater. Sci. Semicond. Process. 2024, 171, 107986. [Google Scholar] [CrossRef]
- Luo, N.; Wang, C.; Zhang, D.; Guo, M.; Wang, X.; Cheng, Z.; Xu, J. Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sens. Actuators B 2022, 354, 130982. [Google Scholar] [CrossRef]
- Mozalev, A.; Calavia, R.; Vazquez, R.M.; Grdcia, I.; Cane, C.; Correig, X.; Vilanova, X.; Gispert-Guirado, F.; Hubalek, J.; Llobet, E. MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer. Int. J. Hydrogen Energy 2013, 39, 8011–8021. [Google Scholar] [CrossRef]
- Ong, W.L.; Zhang, C.; Ho, G.W. Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates. Nanoscale 2011, 3, 4206–4214. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Ahn, J.H.; Lee, J.; Yoon, J.; Choi, S.J. A bottom-gate silicon nanowire field-effect transistor with functionalized palladium nanoparticles for hydrogen gas sensors. Solid State Electron. 2015, 114, 76–79. [Google Scholar] [CrossRef]
- Rashid, T.R.; Phan, D.T.; Chung, G.S. A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Sens. Actuators B 2013, 185, 777–784. [Google Scholar] [CrossRef]
- Lim, M.A.; Kim, D.H.; Park, C.O.; Lee, Y.W.; Han, S.W.; Li, Z.; Williams, R.S.; Park, I. A New Route toward Ultrasensitive, Flexible Chemical Sensors: Metal Nanotubes by Wet-Chemical Synthesis along Sacrificial Nanowire Templates. ACS Nano 2012, 6, 598–608. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, Z.; Song, J.; Cheng, Z. Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B 2010, 148, 87–92. [Google Scholar] [CrossRef]
- Zhang, M.; He, Z.; Cheng, W.; Li, X.; Zan, X.; Bao, Y.; Gu, H.; Homewood, K.; Gao, Y.; Zhang, S.; et al. A room-temperature MEMS hydrogen sensor for lithium ion battery gas detecting based on Pt-modified Nb doped TiO2 nanosheets. Int. J. Hydrogen Energy 2024, 74, 307–315. [Google Scholar] [CrossRef]
- Kadhim, I.H.; Hassan, H.A.; Abdullah, Q.N. Hydrogen Gas Sensor Based on Nanocrystalline SnO2 Thin Film Grown on Bare Si Substrates. Nano Micro Lett. 2016, 8, 20–28. [Google Scholar] [CrossRef]
- Guo, M.; Luo, N.; Bai, Y.L.; Xue, Z.; Hu, Q.; Xu, J. MEMS sensor based on MOF-derived WO3-C/In2O3 heterostructures for hydrogen detection. Sens. Actuators B 2024, 398, 134151. [Google Scholar] [CrossRef]
- Weber, M.J.; Kim, J.H.; Lee, J.H.; Kim, J.Y.; Xiao, C. High-performance nanowire hydrogen sensors by exploiting the synergistic effect of Pd nanoparticles and metal-organic framework membranes. ACS Appl. Mater. Interfaces 2018, 10, 34765–34773. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.T.; Johnson, E.A.; Moelders, N.; Mcneal, M.P.; Pralle, M.U.; Greenwald, A.C.; Ho, W.; Puscasu, I.; George, T.; Choi, D.S. MEMS-based sensor system for environmental monitoring. SPIE Opt. East 2002, 4576, 49–55. [Google Scholar]
- Wei, W.; Yang, J.; Tao, T.; Xia, X.; Bao, Y.; Lourenco, M.; Homewood, K.; Huang, Z.; Gao, Y. A CuO/TiO2 heterojunction based CO sensor with high response and selectivity. Energy Environ. Mater. 2023, 6, e12570. [Google Scholar] [CrossRef]
- Teleki, A.; Pratsinis, S.E.; Kalyanasundaram, K.; Gouma, P.I. Sensing of organic vapors by flame-made TiO2 nanoparticles. Sens. Actuators B 2006, 119, 683–690. [Google Scholar] [CrossRef]
- Bagolini, A.; Gaiardo, A.; Crivellari, M.; Demenev, E.; Bartali, R.; Picciotto, A.; Valt, M.; Ficorella, F.; Guidi, V.; Bellutti, P. Development of MEMS MOS gas sensors with CMOS compatible PECVD inter-metal passivation. Sens. Actuators B 2019, 292, 225–232. [Google Scholar] [CrossRef]
- Choi, Y.J.; Seeley, Z.; Bandyopadhyay, A.; Bose, S.; Akbaret, S.A. Aluminum-doped TiO2 nano-powders for gas sensors. Sens. Actuators B 2007, 124, 111–117. [Google Scholar] [CrossRef]
- Madler, L.; Roessler, A.; Pratsinis, S.E.; Sahm, T.; Gurlo, A.; Barsan, N.; Weimar, U. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators B 2006, 114, 283–295. [Google Scholar] [CrossRef]
- Hjiri, M.; Mir, L.E.; Leonardi, S.G.; Pistone, A.; Mavilia, L.; Neri, G. Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B 2014, 196, 413–420. [Google Scholar] [CrossRef]
- Anukunprasert, T.; Saiwan, C.; Traversa, E. The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2. Sci. Technol. Adv. Mater. 2005, 6, 359–363. [Google Scholar] [CrossRef]
- Tian, W.; Niu, J.; Li, W.; Liu, X. Study on adsorption of CO and CO2 by graphene gas sensor. Mod. Phys. Lett. B 2021, 35, 2150154. [Google Scholar] [CrossRef]
- Bayram, A.; Ozbek, C.; Senel, M.; Okur, S. CO gas sorption properties of ferrocene branched chitosan derivatives. Sens. Actuators B 2017, 241, 308–313. [Google Scholar] [CrossRef]
- Ping, S.; Jiang, Y.; Xie, G.; Du, X.; H Jia, H. A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor. Sens. Actuators B 2009, 141, 104–108. [Google Scholar]
- Dixit, V.; Misra, S.; Sharma, B. Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films. Sens. Actuators B 2005, 104, 90–93. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Chen, L.; Yao, J.; Lin, G.; Zhang, X.; Zhang, G.; Zhang, D. Conjugated semiconducting polymer with thymine groups in the side chains: Charge mobility enhancement and application for selective field-effect transistor sensors toward CO and H2S. Chem. Mater. 2019, 31, 1800–1807. [Google Scholar] [CrossRef]
- Zhang, H.D.; Yan, X.; Zhang, Z.H.; Yu, G.F.; Han, W.P.; Zhang, J.C.; Long, Y.Z. Electrospun PEDOT: PSS/PVP nanofibers for CO gas sensing with quartz crystal microbalance technique. Int. J. Polym. Sci. 2016, 2016, 3021353. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, N.; Xue, Z.; Bai, Y.L.; Xu, J. Hierarchically porous ZnO derived from zeolitic imidazolate frameworks for high-sensitive MEMS NO2 sensor. Talanta 2024, 274, 125995. [Google Scholar] [CrossRef]
- Rana, L.; Gupta, R.; Tomar, M.; Gupta, V. ZnO/ST-Quartz SAW resonator: An efficient NO2 gas sensor. Sens. Actuators B 2017, 252, 840–845. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, C.; Luo, Y.; Debliquy, M. Flexible NO2 gas sensors based on sheet-like hierarchical ZnO1−x coatingas sensor deposited on polypropylene papers by suspension flame spraying. J. Taiwan Inst. Chem. E. 2017, 75, 280–286. [Google Scholar] [CrossRef]
- Rana, L.; Gupta, R.; Kshetrimayum, R.; Tomar, M.; Gupta, V. Fabrication of surface acoustic wave based wireless NO2 gas sensor. Surf. Coat. Technol. 2018, 343, 89–92. [Google Scholar] [CrossRef]
- Hsueh, T.J.; Li, P.S.; Fang, S.Y.; Hsu, C.L. A vertical CuO-NWS/MEMS NO2 gas sensor that is produced by sputtering. Sens. Actuators B 2022, 355, 131260. [Google Scholar] [CrossRef]
- Hsueh, T.J.; Wu, S.S. Highly sensitive Co3O4 nanoparticles/MEMS NO2 gas sensor with the adsorption of the Au nanoparticles. Sens. Actuators B 2020, 329, 129201. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Yamani, Z.H.; Mohamedkhair, A.K.; Hendi, A.H.Y.; Hossain, M.K.; Ibrahim, A. Gold nanoparticles incorporated SnO2 thin film: Highly responsive and selective detection of NO2 at room temperature. Mater. Lett. 2018, 214, 283–286. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Wang, Z.; Song, Z.; Zhou, X.; Han, N.; Chen, Y. Sputtered SnO2:NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors. Sens. Actuators B 2019, 278, 28–38. [Google Scholar] [CrossRef]
- Jian, L.Y.; Lee, H.Y.; Lee, C.T. Enhanced nitrogen dioxide gas-sensing performance using tantalum pentoxide-alloyed indium oxide sensing membrane. IEEE Sens. J. 2019, 19, 7829–7834. [Google Scholar] [CrossRef]
- Jian, L.Y.; Lee, C.T.; Lee, H.Y. Performance Improvement of NO2 Gas Sensor Using Rod-Patterned Tantalum Pentoxide-Alloyed Indium Oxide Sensing Membranes. IEEE Sens. J. 2020, 99, 2134–2139. [Google Scholar] [CrossRef]
- Wei, W.; Luo, N.; Wang, X.; Xue, Z.; Shah, L.A.; Hu, Q.; Xu, J. Amorphous RhOx decorated black indium oxide for rapid and flexible NO2 detection at room temperature. Sens. Actuators B 2024, 414, 135944. [Google Scholar] [CrossRef]
- Nagarjuna, Y.; Hsiao, Y.J. TeO2 doped ZnO nanostructure for the enhanced NO2 gas sensing on MEMS sensor device. Sens. Actuators B 2024, 401, 134891. [Google Scholar] [CrossRef]
- Navale, S.T.; Mane, A.T.; Chougule, M.A.; Sakhare, R.D.; Nalage, S.R.; Patil, V.B. Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synth. Met. 2014, 189, 94–99. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Kim, H.D. Dynamic response and swift recovery of filament heater-Integrated low-power transparent CNT gas sensor. Adv. Funct. Mater. 2024, 34, 2405260. [Google Scholar] [CrossRef]
- Ahmad, I.; Lee, D.; Chae, M.; Kim, H.D. Advanced recovery and enhanced humidity tolerance of CNTs gas sensor using a filament heater. Chem. Eng. J. 2024, 496, 154014. [Google Scholar] [CrossRef]
- Gaikwad, S.; Bodkhe, G.; Deshmukh, M.; Patil, H.; Rushi, A.; Shirsat, M.D.; Koinkar, P.; Kim, Y.H.; Mulchandani, A. Chemiresistive sensor based on polythiophene modified single-walled carbon nanotubes for detection of NO2. Mod. Phys. Lett. B. 2015, 29, 1540046. [Google Scholar] [CrossRef]
- Chung, G.S.; Yaqoob, U.; Uddin, A.S.M. A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sens. Actuators B 2016, 224, 738–746. [Google Scholar]
- Hua, C.; Shang, Y.; Wang, Y.; Xu, J.; Zhang, Y.; Li, X.; Cao, A. A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film. Appl. Surf. Sci. 2017, 405, 405–411. [Google Scholar] [CrossRef]
- Li, L.; He, S.; Liu, M.; Zhang, C.; Chen, W. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal. Chem. 2015, 87, 1638–1645. [Google Scholar] [CrossRef]
- Sangeetha, M.; Madhan, D. Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method. Opt. Laser Technol. 2020, 127, 106193. [Google Scholar] [CrossRef]
- Zhan, M.; Hussain, S.; Algarni, T.S.; Shah, S.; Liu, G. Facet controlled polyhedral ZIF-8 MOF nanostructures for excellent NO2 gas-sensing applications. Mater. Res. Bull. 2020, 136, 111133. [Google Scholar] [CrossRef]
- Kim, T.; Lee, D.; Chae, M.; Kim, K.H.; Kim, H.D. Enhancing the resistive switching properties of transparent HfO2-based memristor devices for reliable gasistor applications. Sensors 2024, 24, 6382. [Google Scholar] [CrossRef]
- Patricia, P.; Daniel, R. TiO2 nanotubes membrane flexible sensor for low-temperature H2S detection. Chemosensors 2016, 11, 3377. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Luo, N.; Chen, J.; Cheng, J.; Ren, W.; Xu, J. Enhanced H2S sensing performance of BiFeO3 based MEMS gas sensor with corona poling. Sens. Actuators B 2022, 358, 131477. [Google Scholar] [CrossRef]
- Yempati, N.; Lin, J.C.; Wang, S.C.; Yu, J.H. AZO-Based ZnO nanosheet MEMS sensor with different Al concentrations for enhanced H2S gas sensing. J. Nanomater. 2021, 13, 3377. [Google Scholar]
- Chou, C.H.; Nagarjuna, Y.; Yang, Z.C.; Hsiao, Y.; Wang, S.C. Catalytic effect of Ag embedded with ZnO prepared by Co-sputtering on H2S gas sensing MEMS device. Vacuum 2022, 202, 111210. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, T.; Li, Y. Ppb-level H2S sensor with super selectivity based on Fe-NiOx nanotube assembled by AAO template. Ceram. Int. 2024, 50, 22243–22251. [Google Scholar] [CrossRef]
- Dong, Z.; Hu, Q.; Liu, H.; Wu, Y.; Ma, Z.; Fan, Y.; Li, R.; Xu, J.; Wang, X. 3D flower-like Ni doped CeO2 based gas sensor for H2S detection and its sensitive mechanism. Sens. Actuators B 2022, 357, 131227. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Wang, C.; Xu, J.; Bai, Y.L. In2O3 decorated Co32 cluster for high performance H2S MEMS sensors. Inorg. Chem. Commun. 2023, 157, 111256. [Google Scholar] [CrossRef]
- Cho, I.; Kang, K.; Yang, D.; Yun, J.; Park, J. Localized Liquid-Phase Synthesis of Porous SnO2 Nanotubes on MEMS Platform for Low-Power, High Performance Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 27111–27119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z.; Lv, G.; Zhang, Y.; Chen, J.; Luo, Y.; Duan, g. Ultrafast-response H2S MEMS gas sensor based on double phase In2O3 monolayer particle film. Sens. Actuators B 2024, 412, 135787. [Google Scholar] [CrossRef]
- Miao, X.Y.; Zhu, L.Y.; Wu, X.Y.; Mao, L.M.; Jin, X.H.; Lu, H.L. Precise preparation of α-Fe2O3/SnO2 core-shell nanowires via atomic layer deposition for selective MEMS-based H2S gas sensor. Sens. Actuators B 2023, 378, 133111. [Google Scholar] [CrossRef]
- Mao, L.M.; Xu, L.; Jin, X.H.; Zhu, L.Y.; Tao, W.T.; Lu, H.L. Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods. Appl. Surf. Sci. 2022, 602, 154339. [Google Scholar] [CrossRef]
- He, L.; Jia, Y.; Meng, F.; Li, M.; Liu, J. Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing. J. Mater. Sci. 2009, 44, 4326–4333. [Google Scholar] [CrossRef]
- He, H.; Zhao, C.; Xu, J.; Qu, K.; Jiang, Z.; Gao, Z.; Song, Y.Y. Exploiting Free-Standing p-CuO/n-TiO2 Nanochannels as a Flexible Gas Sensor with High Sensitivity for H2S at Room Temperature. ACS Sens. 2021, 6, 3387–3397. [Google Scholar] [CrossRef]
- Meng, F.N.; Di, X.P.; Dong, H.W.; Zhan, Y.; Zhu, C.L.; Li, C.; Chen, Y.J. Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sens. Actuators B 2013, 182, 197–204. [Google Scholar] [CrossRef]
- Ramgir, N.S.; Goyal, C.P.; Sharma, P.K.; Goutam, U.K.; Bhattacharya, S.; Datta, N.; Kaur, M.; Debnath, A.K.; Aswal, D.K.; Gupta, S.K. Selective H2S sensing characteristics of CuO modified WO3 thin films. Sens. Actuators B 2013, 188, 525–532. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, K.; Liao, H.; Debliquy, M. Room temperature WO3-Bi2WO6 sensors based on hierarchical microflowers for ppb-level H2S detection. Chem. Eng. J. 2022, 430, 132813. [Google Scholar] [CrossRef]
- Su, P.G.; Peng, Y.T. Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sens. Actuators B 2014, 193, 637–643. [Google Scholar] [CrossRef]
- Geng, L. Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synth. Met. 2010, 160, 1708–1711. [Google Scholar] [CrossRef]
- Shboul, A.A.; Shih, A.; Izquierdo, R. A Flexible Indium Oxide Sensor with Anti-Humidity Property For Room Temperature Detection of Hydrogen Sulfide. IEEE Sens. J. 2024, 99, 9667–9674. [Google Scholar] [CrossRef]
- Shboul, A.A.A.; Izquierdo, R. Printed chemiresistive In2O3 nanoparticle-based sensors with ppb detection of H2S gas for food packaging. ACS Appl. Nano Mater. 2021, 4, 9508–9517. [Google Scholar] [CrossRef]
- Shewale, P.S.; Yun, K.S. Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor. J. Alloys Compd. 2020, 837, 155527. [Google Scholar] [CrossRef]
- Biskupski, D.; Herbig, B.; Schottner, G.; Moos, R. Nanosized titania derived from a novel sol–gel process for ammonia gas sensor applications. Sens. Actuators B 2011, 153, 329–334. [Google Scholar] [CrossRef]
- Qiu, P.; Qin, Y.; Xia, Q. Ultrasensitive memristor-based gas sensor (gasistor) with gas-triggered switch and memory function for dilute NH3 detection. Sens. Actuators B 2022, 373, 132730. [Google Scholar] [CrossRef]
- Wen, P.H.; Zheng, H.Y.; Hsueh, T.J. A WO3-NPs/MEMS NH3 Gas Sensor. J. Electrochem. Soc. 2023, 170, 037506. [Google Scholar] [CrossRef]
- Heish, C.H.; Lin, T.W.; Juang, F.R.; Huang, I.Y. Micro-gas sensors with a suspended micro-heater for ammonia gas detection. J. Micromechanics Microeng. 2023, 13, 015004. [Google Scholar]
- Maricar, M.S.; Sastikumar, D.; Vanga, P.R.; Ashok, M. Fiber optic gas sensor response of hydrothermally synthesized nanocrystalline bismuth tungas sensortate to methanol. Mater. Lett. 2021, 288, 129337. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Zhu, Z. Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance. Appl. Surf. Sci. 2006, 252, 2404–2411. [Google Scholar] [CrossRef]
- Minh, V.A.; Le, A.T.; Huy, T.Q.; Hung, V.N.; Quy, N.V. Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 2013, 265, 458–464. [Google Scholar] [CrossRef]
- Quy, N.V.; Minh, V.A.; Luan, N.V.; Hung, V.N.; Hieu, N.V. Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods. Sens. Actuators B 2011, 153, 188–193. [Google Scholar]
- Li, W.; Guo, Y.; Tang, Y.; Zu, X.; Ma, J.; Wang, L.; Fu, Y.Q. Room-temperature ammonia sensor based on ZnO nanorods deposited on ST-cut quartz surface acoustic wave devices. Sensors 2017, 17, 1142. [Google Scholar] [CrossRef]
- Zhu, Y.; Fu, H.; Ding, J.; Li, H.; Zhang, M.; Zhang, J.; Liu, Y. Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors. Appl. Optics 2018, 57, 7924. [Google Scholar] [CrossRef]
- Wang, S.Y.; Ma, J.Y.; Li, Z.J.; Su, H.Q.; Alkurd, N.R.; Zhou, W.L.; Wang, L.; Du, B.; Tang, Y.L.; Ao, D.Y.; et al. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. Microelectron. Eng. 2015, 285, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 2013, 178, 485–493. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Yao, Y.; Li, N.; Chen, X. High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer. Sens. Actuators B 2014, 196, 183–188. [Google Scholar] [CrossRef]
- Jia, Y.; Yu, H.; Zhang, Y.; Dong, F.; Li, Z. Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor. Colloid. Surf. B. 2016, 148, 263–269. [Google Scholar] [CrossRef]
- Zhu, H.; Xie, D.; Lin, S.; Zhang, W.; Yang, Y.; Zhang, R.; Shi, X.; Wang, H.; Zhang, Z.; Zu, X.; et al. Elastic loading enhanced NH3 sensing for surface acoustic wave sensor with highly porous nitrogen doped diamond like carbon film. Sens. Actuators B 2021, 344, 130175. [Google Scholar] [CrossRef]
- Aditee, J.; Gangal, S.A.; Gupta, S.K. Ammonia sensing properties of polypyrrole thin films at room temperature. Sens. Actuators B 2011, 156, 938–942. [Google Scholar]
- Cho, J.H.; Yu, J.B.; Kim, J.S.; Sohn, S.O.; Lee, D.D.; Huh, J.S. Sensing behaviors of polypyrrole sensor under humidity condition. Sens. Actuators B 2005, 108, 389–392. [Google Scholar] [CrossRef]
- Malkeshi, H.; Moghaddam, H.M. Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method. J. Polym. Res. 2016, 23, 108. [Google Scholar] [CrossRef]
- Lin, T.H.; Li, Y.T.; Hao, H.C.; Fang, I.C.; Yao, D.J. Surface acoustic wave gas sensor for monitoring low concentration ammonia. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; Volume 1140–1143. [Google Scholar]
- Shen, C.Y.; Huang, C.P.; Huang, W.T. Gas-detecting properties of surface acoustic wave ammonia sensors. Sens. Actuators B 2004, 101, 1–7. [Google Scholar] [CrossRef]
- Long, G.; Guo, Y.; Li, W.; Tang, Q.; Fu, Y. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron. Eng. 2019, 222, 111201. [Google Scholar] [CrossRef]
- Subramanian, M.; Dhayabaran, V.V.; Sastikumar, D.; Shanmugavadivel, M. Development of room temperature fiber optic gas sensor using clad modified Zn3(VO4)2. J. Alloys Compd. 2018, 750, 153–163. [Google Scholar] [CrossRef]
Sensitive Material Category | Sensitive Material | Fabrication Technique | Working Temperature (°C) | Detection Range (ppm) | Response Time (s) | Recovery Time (s) | Sensitivity | Ref. |
---|---|---|---|---|---|---|---|---|
MOS | ZnO-450 | Pyrolysis of ZIF-90 | 190 | 0.035–40 | 9 | 26 | 2.42@10 ppm c | [45] |
MOS | ZnO | RF magnetron sputtering | Room temperature | 0.4–16 | N/a | N/a | 6.0 kHz/ppm e | [46] |
MOS | ZnO1-x | Suspension flame spray (SFS) | Room temperature | 0.25–1 | 180 | 300 | 2.61@1 ppm c | [47] |
MOS | PZT | Pulsed laser deposition | Room temperature | 80–250 | N/a | N/a | 9.6 Hz/ppm e | [48] |
MOS | CuO-NWs | RF sputtering | 119 | 100–500 | 136.3 | 272.3 | 50.1%@0.5 ppb c | [49] |
Metal/MOS | Au/Co3O4-NPs | Ultrasonic wave grinding technology | 136 | 0.01–10 | 84 | 68 | 51%@0.2 ppm c | [50] |
Metal/MOS | Au-NP/SnO2 thin film | DC/RF sputtering | Room temperature | 0.6–50 | 70 | N/a | 90%@50 ppm d | [51] |
Metal/MOS | Au-NP/SnO2/NiO thin films | E-beam evaporation | 200 | 0.05–5 | N/a | N/a | 180%@5 ppm a | [52] |
Metal/MOS | Ta/In2O3 | RF magnetron co-sputtering | 120 | 1–100 | 59 | 339 | 64.5@100 ppm c | [53] |
Metal/MOS | Ta/In2O3 | RF magnetron sputtering | 110 | 0.7–100 | 48 | 329 | 76.1@100 ppm c | [54] |
MOS/MOS | RhOx/B-In2O3 | Dip coating | 25–125 | 1–20 | 8 | 13 | 42@5 ppm c | [55] |
MOS/MOS | TeO2/ZnO | Co-sputtering technique | 100 | 0.2–1 | 13 | 38 | 80%@1 ppm d | [56] |
Polymer | PPy thin film | Spin coating technique | Room temperature | 10–100 | 126 | 2170 | 1.12@100 ppm a | [57] |
CBM | CNT | RF sputtering | Room temperature | 10 | 0.001 | 0.001 | 1.77@10 ppm a | [58] |
CBM | CNT | RF sputtering | Room temperature | 10–50 | N/a | N/a | 52.20%@50 ppm c | [59] |
Polymer/CBM | Polythiophene-SWNTs | Potent ion static deposition | Room temperature | 0.01–10 | 20 | N/a | 28@10 ppm b | [60] |
MOS/CBM | WO3-NP/MWCNT-RGO | Photolithography and radio frequency magnetron sputtering | Room temperature | 1–25 | 420 | 800 | 17%@5 ppm c | [61] |
MOS/CBM | SWNT-Fe2O3 | Floating catalytic chemical vapor deposition method | Room temperature | 1–100 | N/a | N/a | 18.3%@100 ppm c | [62] |
MOS/CBM | SnO2/rGO | Hummers method | 55 | 14–110 | 80 | 380 | 11.8@110 ppm a | [63] |
Inorganic substance/CBM | MoS2/Graphene | Chemical method | Room temperature | 0–500 | 22 | 35 | 61%@500 ppm c | [64] |
MOF | Polyhedral ZIF-8 nanostructures | Solvothermal method | 350 | 10–100 | 113.5 | 111.5 | 118.5@100 ppm a | [65] |
Sensitive Material Category | Sensitive Material | Fabrication Technique | Working Temperature (°C) | Detection Range (ppm) | Response Time (s) | Recovery Time (s) | Sensitivity | Ref. |
---|---|---|---|---|---|---|---|---|
MOS | TiO2 | Sputtering evaporation | 70 | 6–38 | N/a | N/a | 144@38 ppm c | [67] |
MOS | BiFeO3 | Facile sol–gel method | 220 | 0.01–1.2 | 3 | 7 | 4.8@1.2 ppm a | [68] |
Metal/MOS | AZO | RF sputtering technique | 250 | 0.2–1.0 | N/a | N/a | 14%@1000 ppb d | [69] |
Metal/MOS | Ag/ZnO | Co-sputtering technique | 250 | 0.2–1.0 | 3 | N/a | 16%@0.001 ppm c | [70] |
Metal/MOS | Fe-NiOx nanotubes | Drop coating | 270 | 0.05–0.8 | 3.2 | 8.1 | 5.24@0.8 ppm c | [71] |
Metal/MOS | Ni/CeO | Drop coating | 200 | 0.01–5.6 | 8 | 13 | 3.06@0.5 ppm a | [72] |
Metal/MOS | In2O3/Co32 | Drop coating | 185 | 0.05–2.5 | 30 | 76 | N/a | [73] |
MOS/MOS | ZnO/SnO2 | LPD | 25–300 | 1–20 | 36–55 | N/a | 35.31@20 ppm a | [74] |
MOS/MOS | c/h-In2O3 | Self-assembly method | 160 | 0.02–50 | 3.3 | N/a | 54.4@50 ppm a | [75] |
MOS/MOS | α-Fe2O3/SnO2 | Atomic layer deposition (ALD) | 250 | 1–10 | 13.8 | 104.5 | 4.3@10 ppm a | [76] |
MOS/MOS | Nb2O5/SnO2 | ALD | 275 | 1–20 | 20 | 97 | 4.0@20 ppm a | [77] |
MOS/MOS | CuO/SnO2 | Dipping method | 35 | 0.01–10 | 90 | N/a | 56,000@10 ppm a | [78] |
MOS/MOS | CuO/TiO2 | Simple electrochemical anodization | Room temperature | 3–400 | 41 | 92 | 46.81%@100 ppm c | [79] |
MOS/MOS | Cu2O/CuO | One-step reduction approach | 95 | 0.05–1 | N/a | 76 | 2.1@0.05 ppm b | [80] |
MOS/MOS | CuO/WO3 | RF sputtering technique | 300 | 0–15 | 5 | 17 min | 534@10 ppm a | [81] |
MOS/MOS | WO3-Bi2WO6 | Facile hydrothermal technique | Room temperature | 0.002–0.050 | 52 | 119 | 4.4@0.050 ppm a | [82] |
Polymer/MOS | PPy/WO3 | In situ photopolymerization | Room temperature | 0.1–1 | 360 | 12,600 | 81%@1 ppm c | [83] |
Polymer/MOS | PPy/WO3 | Chemical oxidation polymerization and mechanical mixing | 90 | 0.2–1 | 70 | 34 | 61%@1000 ppm c | [84] |
Polymer/MOS | PDPP4T-T-Hg(II) | Air–water interface coordination reactions of thymine groups with ions | Room temperature | 0.001–1000 | N/a | N/a | N/a | [44] |
CBM/polymer/MOS | Gt/Ps/In2O3 | Doctor blade method | Room temperature | 0.1–1 | N/a | N/a | 70@1 ppm a | [85] |
CBM/polymer/MOS | Gt/Ps/CuAc/In2O3 | Doctor blade method | Room temperature | 0.1–3 | 60 | N/a | 18.1@0.1 ppm a | [86] |
Metal/MOS/CBM | Cu/ZnO/RGO | RF magnetron sputtering | 24 | 0.136–250 | 14 | 32 | 0.87%@100 ppm c | [87] |
Sensitive Material Category | Sensitive Material | Fabrication Technique | Working Temperature (°C) | Detection Range (ppm) | Response Time (s) | Recovery Time (s) | Sensitivity | Ref. |
---|---|---|---|---|---|---|---|---|
MOS | TiO2 | Hydrothermal process | 350 | 56, 103, 156 | N/a | N/a | 1@1000 ppm a | [88] |
MOS | TiO2 | Hydrothermal method | Room temperature | 1 | <1 s | <1 s | 164.2@1 ppm b | [89] |
MOS | WO3 | Ultrasonic wave grinding | 200 | 0.04–5 | 30 | 135 | 2.525@5 ppm a | [90] |
MOS | WO3-NPs | Plasma-enhanced chemical vapor deposition (PECVD) | 142 | 1.3 | 59 | 47 | 16%@1.3 ppm c | [91] |
MOS | Bismuth tungstate (Bi2WO6) nanomaterials | Hydrothermal technique | Room temperature | 0–500 | N/a | N/a | 5 counts/kpa | [92] |
MOS | ZnO-NWs | Drop-coating technique | Room temperature | 1000 | 4–5 | N/a | −956 Hz/ppm d | [93] |
MOS | ZnO nanorods | Wet chemical route | Room temperature | 150 | N/a | N/a | 0.62 Hz/ppm d | [90] |
MOS | ZnO-NRs | Hydrothermal method | Room temperature | 800 | 720 | 1400 | 11.33@100 ppm a | [94] |
MOS | ZnO-NRs | Hydrothermal method | Room temperature | 100 | 151 | 568 | −1.094 Hz/ppm d | [95] |
MOS | ZnO nanofilm | Sol–gel and spin coating | Room temperature | 100 | 143 | 426 | −0.307 Hz/ppm d | [96] |
MOS | Three-dimensional ZnO nanoflowers | Drop coating | Room temperature | 0–7281 | 26 | 36 | 4.32 counts ppm−1 | [97] |
MOS/MOS | ZnO/SiO2(ZcS) composite film | Sol–gel method and spin coating | Room temperature | 50 | N/a | N/a | 0.02264 kHz/ppm d | [98] |
CBM | SWNT film | CVD | Room temperature | 10–200 | 250 | 300 | 4%@200 ppm c | [62] |
CBM | Polyaniline/graphene | Drop-coating method | Room temperature | 20–100 | 50 | 35 | 85 Hz/ppm d | [99] |
CBM | Polyaniline/GO layer | Drop-coating method | Room temperature | 800 | 79 | 3 | 214 Hz/ppm d | [100] |
CBM | CA/PEI/GO nanofiber | Sol–gel method | Room temperature | 80 | <10 | N/a | 11.3 Hz/ppm d | [101] |
CBM | N-DLC | ECR-PECVD | Room temperature | 0.1–100 | 5 | 29 | 3.3 kHz/ppm d | [102] |
Polymer | PPy thin film | Polymerization process | Room temperature | 4–80 | 20 | 800 | 16%@25 ppm c | [103] |
Polymer | PPy nanofiber | Reactive template approach | Room temperature | 20–150 | 15 | N/a | 1.53@20 ppm b | [104] |
Polymer | Iodine-doped polythiophene (PTh) film (IPTF) | Electrophoretic deposition technique | Room temperature | 460–1850 | 78 | 346 | 94.64%@1850ppm c | [105] |
Metal/polymer | Au/PPy | Spin coating | Room temperature | 2–10 | 59 | 72 | 898 Hz/ppm d | [106] |
Inorganic substance | L-glutamic acid hydrochloride | Air-brushed coating | Room temperature | 0.56–4.0 | <300 | <180 | 74 Hz/ppm d | [107] |
Inorganic substance | ZnS nanostructures | Chemical bath deposition method | Room temperature | 20 | 45 | 148 | 62.5 Hz/ppm d | [108] |
Inorganic substance | Zinc vanadate (Zn3(VO4)2) nanopowder | Dip coating | Room temperature | 20–500 | 2808 | 3540 | 0.019 µV/ppm | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Lei, M.; Xia, X. Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials. Sensors 2024, 24, 8125. https://doi.org/10.3390/s24248125
Wu Y, Lei M, Xia X. Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials. Sensors. 2024; 24(24):8125. https://doi.org/10.3390/s24248125
Chicago/Turabian StyleWu, Yingjun, Ming Lei, and Xiaohong Xia. 2024. "Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials" Sensors 24, no. 24: 8125. https://doi.org/10.3390/s24248125
APA StyleWu, Y., Lei, M., & Xia, X. (2024). Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials. Sensors, 24(24), 8125. https://doi.org/10.3390/s24248125