Optimal Position and Orientation of an Ossicular Accelerometer for Human Auditory Prostheses
Abstract
1. Introduction
2. Methods
2.1. Accelerometer Design and Sensitivity to Base Motion
2.2. Middle Ear Model as a Virtual Testing Environment
2.3. Placement and Anatomical Restrictions
2.4. Finding the Optimal Position and Orientation for the Accelerometer
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Deafness and Hearing Loss. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 1 October 2024).
- NIDCD. Quick Statistics About Hearing, Balance, & Dizziness. 2024. Available online: https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing (accessed on 1 October 2024).
- WHO. Ear and Hearing Care. 2023. Available online: https://www.who.int/europe/news-room/questions-and-answers/item/ear-and-hearing-care (accessed on 1 October 2024).
- Cunningham, L.L.; Tucci, D.L. Hearing Loss in Adults. N. Engl. J. Med. 2017, 377, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- Holder, J.T.; Mayberry, L.S.; Gifford, R. The Cochlear Implant Use Questionnaire: Assessing Habits and Barriers to Use. Otol. Neurotol. 2022, 43, e23–e29. [Google Scholar] [CrossRef] [PubMed]
- Alhabib, S.F.; Abdelsamad, Y.; Badghaish, R.S.; Alzhrani, F.; Hagr, A.; Almuhawas, F. Cochlear implant: More hearing better speech performance. Int. J. Pediatr. Otorhinolaryngol. 2021, 150, 110896. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.A.; Kitterick, P.T.; Chong, L.Y.; Edmondson-Jones, M.; Barker, F.; Hoare, D.J. Hearing aids for mild to moderate hearing loss in adults. Cochrane Database Syst. Rev. 2017, 9, CD012023. [Google Scholar] [CrossRef]
- Banakis Hart, R.M.; Jenkins, H.A. Implantable Hearing Aids: Where are we in 2020? Laryngoscope Investig. Otolaryngol. 2020, 5, 1184–1191. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division, Board on Health Sciences Policy; Committee on Accessible and Affordable Hearing Health Care for Adults; Blazer, D.G.; Domnitz, S.; Liverman, C.T. Hearing Health Care for Adults: Priorities for Improving Access and Affordability; National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Denk, F.; Ewert, S.D.; Kollmeier, B. Spectral directional cues captured by hearing device microphones in individual human ears. J. Acoust. Soc. Am. 2018, 144, 2072–2087. [Google Scholar] [CrossRef]
- Briggs, R.J.S.; Eder, H.C.; Seligman, P.M.; Cowan, R.S.C.; Plant, K.L.; Dalton, J.; Money, D.K.; Patrick, J.F. Initial Clinical Experience With a Totally Implantable Cochlear Implant Research Device. Otol. Neurotol. 2008, 29, 114–119. [Google Scholar] [CrossRef]
- MED-EL Press Releases. First Surgeries Ever in Europe with a Totally Implantable Cochlear Implant. 2020. Available online: https://www.medel.com/press-room/press-list/press-details/2020/10/19/first-surgeries-ever-in-europe-with-a-totally-implantable-cochlear-implant (accessed on 1 October 2024).
- Babajanian, E.E.; Dornhoffer, J.R.; Driscoll, C.L.W. Fully Implanted Cochlear Implants. Curr. Otorhinolaryngol. Rep. 2024, 12, 61–65. [Google Scholar] [CrossRef]
- Trudel, M.; Morris, D.P. The remaining obstacles for a totally implantable cochlear implant. Curr. Opin. Otolaryngol. Head Neck Surg. 2022, 30, 298–302. [Google Scholar] [CrossRef]
- Bruschini, L.; Forli, F.; Santoro, A.; Bruschini, P.; Berrettini, S. Fully implantable Otologics MET Carina device for the treatment of sensorineural hearing loss. Preliminary surgical and clinical results. Acta Otorhinolaryngol. Ital. 2009, 29, 79–85. [Google Scholar]
- Pulcherio, J.O.B.; Bittencourt, A.G.; Burke, P.R.; Monsanto, R.d.C.; de Brito, R.; Tsuji, R.K.; Bento, R.F. Carina® and Esteem®: A systematic review of fully implantable hearing devices. PLoS ONE 2014, 9, e110636. [Google Scholar] [CrossRef] [PubMed]
- Sachse, M.; Hortschitz, W.; Stifter, M.; Steiner, H.; Sauter, T. Design of an implantable seismic sensor placed on the ossicular chain. Med. Eng. Phys. 2013, 35, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Gao, N.; Xu, X.; Wu, Y.; Kang, H.; Chi, F. A new floating piezoelectric microphone for the implantable middle ear microphone in experimental studies. Acta Oto-Laryngol. 2016, 136, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Park, W. Encapsulated Sub-Millimeter Piezoresistive Accelerometers for Biomedical Applications. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Yeiser, A.J.; Wawrzynek, E.F.; Zhang, J.Z.; Graf, L.; McHugh, C.I.; Kymissis, I.; Olson, E.S.; Lang, J.H.; Nakajima, H.H. The UmboMic: A PVDF cantilever microphone. J. Micromech. Microeng. 2024, 34, 085010. [Google Scholar] [CrossRef]
- Yüksel, M.B.; Atik, A.C.; Külah, H. Piezoelectric Multi-Channel Bilayer Transducer for Sensing and Filtering Ossicular Vibration. Adv. Sci. 2024, 11, 2308277. [Google Scholar] [CrossRef]
- Creighton, F.; Guan, X.; Park, S.; Kymissis, I.; Nakajima, H.; Olson, E. An Intracochlear Pressure Sensor as a Microphone for a Fully Implantable Cochlear Implant. Otol. Neurotol. 2016, 37, 1596–1600. [Google Scholar] [CrossRef]
- Calero, D.; Paul, S.; Gesing, A.; Alves, F.; Cordioli, J.A. A technical review and evaluation of implantable sensors for hearing devices. Biomed. Eng. Online 2018, 17, 23. [Google Scholar] [CrossRef]
- Zeng, F.G.; Rebscher, S.; Harrison, W.; Sun, X.; Feng, H. Cochlear Implants: System Design, Integration, and Evaluation. IEEE Rev. Biomed. Eng. 2008, 1, 115–142. [Google Scholar] [CrossRef]
- Hake, A.E.; Kitsopoulos, P.; Grosh, K. Design of Piezoelectric Dual-Bandwidth Accelerometers for Completely Implantable Auditory Prostheses. IEEE Sens. J. 2023, 23, 13957–13965. [Google Scholar] [CrossRef]
- Warnholtz, B.; Schär, M.; Sackmann, B.; Lauxmann, M.; Chatzimichalis, M.; Prochazka, L.; Dobrev, I.; Huber, A.M.; Sim, J.H. Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads. Hear. Res. 2021, 406, 108272. [Google Scholar] [CrossRef]
- Gan, R.Z.; Wood, M.W.; Dormer, K.J. Human middle ear transfer function measured by double laser interferometry system. Otol. Neurotol. 2004, 25, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.L.; Roland, J.T.J. Complications of Cochlear Implant Surgery. In Cochlear Implants, 2nd ed.; Thieme: New York, NY, USA, 2006; Chapter 10; pp. 126–132. [Google Scholar] [CrossRef]
- Sackmann, B.; Eberhard, P.; Lauxmann, M. Parameter Identification from Normal and Pathological Middle Ears Using a Tailored Parameter Identification Algorithm. J. Biomech. Eng. 2021, 144, 031006. [Google Scholar] [CrossRef] [PubMed]
- Burovikhin, D.; Dalhoff, E.; Wagner, A.; Schneider, F.; Lauxmann, M. Finite Element Model of a Piezo-Electric Actuator Coupled to the Middle Ear. J. Biomech. Eng. 2023, 145, 021004. [Google Scholar] [CrossRef]
- Hake, A.E.; Zhao, C.; Sung, W.K.; Grosh, K. Design and Experimental Assessment of Low-Noise Piezoelectric Microelectromechanical Systems Vibration Sensors. IEEE Sens. J. 2021, 21, 17703–17711. [Google Scholar] [CrossRef]
- Hake, A. Piezoelectric MEMS Accelerometers for Sensing Ossicular Vibration. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2021. [Google Scholar] [CrossRef]
- Kitsopoulos, P.; Hake, A.E.; Stucken, E.Z.; Welch, C.M.; Grosh, K. Design and testing of ultraminiature MEMS middle ear accelerometers. Aip Conf. Proc. 2024, 3062, 040002. [Google Scholar] [CrossRef]
- Sackmann, B.; Dalhoff, E.; Lauxmann, M. Model-based hearing diagnostics based on wideband tympanometry measurements utilizing fuzzy arithmetic. Hear. Res. 2019, 378, 126–138. [Google Scholar] [CrossRef]
- Van der Jeught, S.; Dirckx, J.J.J.; Aerts, J.R.M.; Bradu, A.; Podoleanu, A.G.H.; Buytaert, J.A.N. Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography. J. Assoc. Res. Otolaryngol. 2013, 14, 483–494. [Google Scholar] [CrossRef]
- Whittemore, K.; Merchant, S.; Rosowski, J. Acoustic Mechanisms—Canal Wall-Up Versus Canal Wall-Down Mastoidectomy. Otolaryngol. Head Neck Surg. 1998, 118, 751–761. [Google Scholar] [CrossRef]
- Gyo, K. Effect of Middle Ear Modification on Umbo Vibration-: Human Temporal Bone Experiments with a New Vibration Measuring System. Arch Otolaryngol. Head Neck Surg. 1986, 112, 1262–1268. [Google Scholar] [CrossRef]
- Schiehlen, W.; Eberhard, P. Applied Dynamic; Springer: Doordrecht, The Netherlands, 2014. [Google Scholar]
- Noussios, G.; Chouridis, P.; Kostretzis, L.; Natsis, K. Morphological and Morphometrical Study of the Human Ossicular Chain: A Review of the Literature and a Meta-Analysis of Experience over 50 Years. J. Clin. Med. Res. 2016, 8, 76–83. [Google Scholar] [CrossRef]
- Zhao, F.; Koike, T.; Wang, J.; Sienz, H.; Meredith, R. Finite element analysis of the middle ear transfer functions and related pathologies. Med. Eng. Phys. 2009, 31, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Sanna, M.; Sunose, H.; Mancini, F.; Russo, A.; Taibah, A.; Falcioni, M. Cochlear Implantation. In Middle Ear and Mastoid Microsurgery, 2nd ed.; Thieme: New York, NY, USA, 2012; Chapter 19; pp. 549–584. [Google Scholar]
- Schraven, S.P.; Mlynski, R.; Dalhoff, E.; Heyd, A.; Wildenstein, D.; Rak, K.; Radeloff, A.; Hagen, R.; Gummer, A.W. Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment. Hear. Res. 2016, 340, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Sanna, M.; Sunose, H.; Mancini, F.; Russo, A.; Taibah, A.; Falcioni, M. Simple Mastoidectomy. In Middle Ear and Mastoid Microsurgery, 2nd ed.; Thieme: New York, NY, USA, 2012; Chapter 12; pp. 245–247. [Google Scholar]
- McKinnon, B.J. Vibrant Soundbridge implantation: The transmastoid/posterior tympanotomy and transcanal approaches. Oper. Tech. Otolaryngol. Head Neck Surg. 2010, 21, 189–193. [Google Scholar] [CrossRef]
- Mlynski, R.; Dalhoff, E.; Heyd, A.; Wildenstein, D.; Rak, K.; Radeloff, A.; Hagen, R.; Gummer, A.W.; Schraven, S.P. Standardized Active Middle-Ear Implant Coupling to the Short Incus Process. Otol. Neurotol. 2015, 36, 1390–1398. [Google Scholar] [CrossRef]
- Sanna, M.; Sunose, H.; Mancini, F.; Russo, A.; Taibah, A.; Falcioni, M. Myringoplasty. In Middle Ear and Mastoid Microsurgery, 2nd ed.; Thieme: New York, NY, USA, 2012; pp. 122–186. [Google Scholar]
- Sanna, M.; Sunose, H.; Mancini, F.; Russo, A.; Taibah, A.; Falcioni, M. Ossiculoplasty. In Middle Ear and Mastoid Microsurgery, 2nd ed.; Thieme: New York, NY, USA, 2012; Chapter 11; pp. 187–244. [Google Scholar]
- Goode, R.; Ball, G.; Nishihara, S.; Nakamura, K. Laser Doppler vibrometer (LDV)—A New Clinical Tool for the Otologist. Am. J. Otol. 1996, 17, 813–822. [Google Scholar]
- BS ISO 226:2003; Acoustics—Normal Equal-Loudness-Level Contours. BSI: London, UK, 2003.
- Gan, R.Z.; Dyer, R.K.; Wood, M.W.; Dormer, K.J. Mass loading on the ossicles and middle ear function. Ann. Otol. Rhinol. Laryngol. 2001, 110, 478–485. [Google Scholar] [CrossRef]
Property | LFSE | HFSE |
---|---|---|
(m) | 140 | 50 |
(m) | 250 | 90 |
L (m) | 53 | 52 |
b, (m) | 333 | 378 |
(m) | 1 | 1 |
Configuration | Criterion | Location [x, y, z] | |||
---|---|---|---|---|---|
1 | Max. voltage sum | 260° | 10° | 70° | |
Min. loudness level | 260° | 5° | 55° | ||
2 | Max. voltage sum | 260° | 0° | 60° | |
Min. loudness level | 60° | 330° | 0° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burovikhin, D.; Kitsopoulos, P.; Lauxmann, M.; Grosh, K. Optimal Position and Orientation of an Ossicular Accelerometer for Human Auditory Prostheses. Sensors 2024, 24, 8084. https://doi.org/10.3390/s24248084
Burovikhin D, Kitsopoulos P, Lauxmann M, Grosh K. Optimal Position and Orientation of an Ossicular Accelerometer for Human Auditory Prostheses. Sensors. 2024; 24(24):8084. https://doi.org/10.3390/s24248084
Chicago/Turabian StyleBurovikhin, Dmitrii, Panagiota Kitsopoulos, Michael Lauxmann, and Karl Grosh. 2024. "Optimal Position and Orientation of an Ossicular Accelerometer for Human Auditory Prostheses" Sensors 24, no. 24: 8084. https://doi.org/10.3390/s24248084
APA StyleBurovikhin, D., Kitsopoulos, P., Lauxmann, M., & Grosh, K. (2024). Optimal Position and Orientation of an Ossicular Accelerometer for Human Auditory Prostheses. Sensors, 24(24), 8084. https://doi.org/10.3390/s24248084