Adaptive Memory-Augmented Unfolding Network for Compressed Sensing
Abstract
:1. Introduction
- We propose a novel adaptive memory-augmented unfolding network for compressed sensing that can adaptively capture more features and recover more details and textures.
- We designed a content-aware adaptive gradient descent module (CAAGDM), which can flexibly extract information and adaptively adjust the output results. Meanwhile, we design a lightweight dual-scale gated denoising module (LDGDM), which effectively reduces the impact of different noises in network learning. In addition, we propose a DMTM, which aims to enhance the transfer and interaction of information in the optimization iteration phase.
- Extensive experimental results on several benchmark datasets show that the proposed AMAUN-CS and AMAUN-CS+ have superior reconstruction performance on the compressed sensing reconstruction task compared to most methods.
2. Related Work
CS Reconstruction Approaches
3. Proposed Method
3.1. Overall Architecture
3.2. Sampling and Initial Reconfiguration of Subnetworks
3.3. Deep Iterative Reconfiguration Subnetwork
3.3.1. Content-Aware Adaptive Gradient Descent Module
3.3.2. Lightweight Dual-Scale Gated Denoising Module
3.4. Enhanced Version: AMAUN-CS+
3.5. Loss Function
4. Experimental Results and Analysis
4.1. Implementaion Details
4.2. Evaluation Metrics
4.3. Comparison with State-of-the-Arts
4.4. Complexity Analysis
4.5. Ablation Analysis
4.5.1. Number of Optimization Phases of the Network
4.5.2. Effectiveness of Different Modules
4.6. Sensitivity to Noise
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.; Romberg, J.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59, 1207–1223. [Google Scholar] [CrossRef]
- Zhao, W.; Gao, L.; Zhai, A.; Zhang, X. Comparison of common algorithms for single-pixel imaging via compressed sensing. Sensors 2023, 23, 4678. [Google Scholar] [CrossRef] [PubMed]
- Salahdine, F.; Kaabouch, N.; El Ghazi, H. A survey on compressive sensing techniques for cognitive radio networks. Phys. Commun. 2016, 20, 61–73. [Google Scholar] [CrossRef]
- Shi, W.; Liu, S.; Jiang, F.; Zhao, C. Video compressed sensing using a convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 425–438. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.Y.; Zhou, J.; Liu, L.; Chen, F.; He, X. A review of compressive sensing in information security field. IEEE Access 2016, 4, 2507–2519. [Google Scholar] [CrossRef]
- Shukla, U.P.; Patel, N.B.; Joshi, A.M. A Survey on Recent Advances in Speech Compressive Sensing. In Proceedings of the 2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), Kottayam, India, 22–23 March 2013; pp. 276–280. [Google Scholar]
- Bi, D.; Xie, Y.; Ma, L.; Li, X.; Yang, X.; Zheng, Y.R. Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction. IEEE Trans. Instrum. Meas. 2017, 66, 777–791. [Google Scholar] [CrossRef]
- Konovalov, A.B. Compressed-sensing-inspired reconstruction algorithms in low-dose computed tomography: A review. Phys. Med. 2024, 124, 104491. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.; Zhang, L.; Li, J.; Zhao, Y.; Yu, J.; He, X. A review of methods for solving the optical molecular tomography. J. Appl. Phys. 2023, 133, 130701. [Google Scholar] [CrossRef]
- Calisesi, G.; Ghezzi, A.; Ancora, D.; D’Andrea, C.; Valentini, G.; Farina, A.; Bassi, A. Compressed sensing in fluorescence microscopy. Prog. Biophys. Mol. Biol. 2022, 168, 66–80. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Huang, X.; Chen, B.; Zhu, C. Hybrid CS-DMRI: Periodic time-variant subsampling and omnidirectional total variation based reconstruction. IEEE Trans. Med. Imaging 2017, 36, 2148–2159. [Google Scholar] [CrossRef] [PubMed]
- Donoho, D.L.; Maleki, A.; Montanari, A. Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. USA 2009, 106, 18914–18919. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Geman, D.; Yang, C. Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 1995, 4, 932–946. [Google Scholar] [CrossRef]
- Li, C.; Yin, W.; Jiang, H.; Zhang, Y. An efficient augmented Lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 2013, 56, 507–530. [Google Scholar] [CrossRef]
- Yang, S.; Xie, L.; Ran, X.; Lei, J.; Qian, X. Pragmatic degradation learning for scene text image super-resolution with data-training strategy. Knowl. Based Syst. 2024, 284, 111349. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, F.; Zhang, S.; Zhao, D. Image compressed sensing using convolutional neural network. IEEE Trans. Image Process. 2019, 29, 375–388. [Google Scholar] [CrossRef]
- Fan, Z.; Lian, F.; Quan, J. Global sensing and measurements reuse for image compressed sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Kuala Lumpur, Malaysia, 19–24 June 2022; pp. 8954–8963. [Google Scholar]
- Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 449–458. [Google Scholar]
- Yao, H.; Dai, F.; Zhang, S.; Zhang, Y.; Tian, Q. DR2-Net: Deep residual reconstruction network for image compressive sensing. Neurocomputing 2019, 359, 483–493. [Google Scholar] [CrossRef]
- Zhou, S.; He, Y.; Liu, Y.; Li, C.; Zhang, J. Multi-channel deep networks for block-based image compressive sensing. IEEE Trans. Multimed. 2020, 23, 2627–2640. [Google Scholar] [CrossRef]
- Tian, J.; Yuan, W.; Tu, Y. Image compressed sensing using multi-scale residual generative adversarial network. Vis. Comput. 2021, 38, 4193–4202. [Google Scholar] [CrossRef]
- Zhang, J.; Ghanem, B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1828–1837. [Google Scholar]
- Zhang, J.; Zhao, C.; Gao, W. Optimization-inspired compact deep compressive sensing. IEEE J. Sel. Top. Signal Process. 2020, 14, 765–774. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Li, H.; Xu, Z. ADMM-CSNet: A deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Y.; Liu, J.; Wen, F.; Zhu, C. AMP-Net: Denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 2020, 30, 1487–1500. [Google Scholar] [CrossRef]
- Shen, M.; Gan, H.; Ning, C.; Hua, Y.; Zhang, T. TransCS: A transformer-based hybrid architecture for image compressive sensing. IEEE Trans. Image Process. 2022, 31, 6991–7005. [Google Scholar] [CrossRef] [PubMed]
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, Y.; Suo, J.; Dai, Q. Plug-and-play algorithms for large-scale snapshot compressive imaging. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 1447–1457. [Google Scholar]
- Su, H.; Jampani, V.; Sun, D.; Gallo, O.; Learned-Miller, E.; Kautz, J. Pixel-adaptive convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach Convention & Entertainment Center, Los Angeles, CA, USA, 15–21 June 2019; pp. 11166–11175. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Chung, J.; Gülçehre, Ç.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Josselyn, S.A.; Tonegawa, S. Memory engrams: Recalling the past and imagining the future. Science 2020, 367, eaaw4325. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423. [Google Scholar]
- Timofte, R.; Agustsson, E.; Gool, V.L.; Yang, M.; Zhang, L. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 114–125. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.B.; Singh, A.; Ahuja, N. Single Image Super-Resolution From Transformed Self-Exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Moulden, B.; Kingdom, F.; Gatley, L.F. The standard deviation of luminance as a metric for contrast in random-dot images. Perception 1990, 19, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, J.; Liu, Q.; Liu, B.; Guo, G. Dual-path attention network for compressed sensing image reconstruction. IEEE Trans. Image Process. 2020, 29, 9482–9495. [Google Scholar] [CrossRef]
- You, D.; Zhang, J.; Xie, J.; Chen, B.; Ma, S. Coast: Controllable arbitrary-sampling network for compressive sensing. IEEE Trans. Image Process. 2021, 30, 6066–6080. [Google Scholar] [CrossRef]
- Song, J.; Zhang, J. SODAS-Net: Side-information-aided deep adaptive shrinkage network for compressive sensing. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Song, J.; Chen, B.; Zhang, J. Dynamic path-controllable deep unfolding network for compressive sensing. IEEE Trans. Image Process. 2023, 32, 2202–2214. [Google Scholar] [CrossRef]
Methods | CS Ratio | ||||||
---|---|---|---|---|---|---|---|
4% | 10% | 25% | 30% | 40% | 50% | Average | |
TVAL3 | 18.75/0.3997 | 22.99/0.4758 | 27.92/0.7238 | 29.00/0.7764 | 31.46/0.8531 | 33.55/0.8957 | 27.28/0.6874 |
ReconNet | 20.93/0.5897 | 23.96/0.7172 | 26.38/0.7883 | 28.20/0.8424 | 30.02/0.8837 | 30.62/0.8983 | 26.68/0.7857 |
ISTA-Net+ | 21.32/0.6037 | 26.58/0.8066 | 32.48/0.9242 | 33.81/0.9393 | 36.04/0.9581 | 38.06/0.9706 | 31.37/0.8670 |
DPA-Net | 23.50/0.7205 | 27.66/0.8530 | 32.38/0.9311 | 33.35/0.9425 | 35.21/0.9580 | 36.80/0.9685 | 31.48/0.8955 |
AMP-Net | 25.26/0.7722 | 29.40/0.8779 | 34.63/0.9481 | 36.03/0.9586 | 38.28/0.9715 | 40.34/0.9804 | 33.99/0.9181 |
OPINE-Net+ | 25.69/0.7920 | 29.79/0.8905 | 34.81/0.9503 | 36.04/0.9600 | 37.96/0.9633 | 40.17/0.9797 | 34.07/0.9228 |
COAST | -/- | 28.69/0.8618 | 32.54/0.9251 | 35.04/0.9501 | 37.13/0.9648 | 38.94/0.9744 | -/- |
TransCS | 25.41/0.7883 | 29.54/0.8877 | 35.06/0.9548 | 35.62/0.9588 | 38.46/0.9737 | 40.49/0.9815 | 34.09/0.9241 |
SODAS-Net | 24.69/0.7838 | 28.84/0.8665 | 34.24/0.9443 | 35.54/0.9545 | 37.72/0.9680 | 39.59/0.9769 | 33.43/0.9156 |
DPC-DUN | 25.20/0.7710 | 29.40/0.8798 | 34.69/0.9482 | 35.88/0.9570 | 37.98/0.9694 | 39.84/0.9778 | 33.83/0.9172 |
AMAUN-CS | 26.34/0.8089 | 30.50/0.9018 | 35.84/0.9596 | 37.08/0.9668 | 39.19/0.9767 | 41.00/0.9830 | 34.99/0.9328 |
AMAUN-CS+ | 26.52/0.8122 | 30.72/0.9045 | 36.02/0.9614 | 37.26/0.9696 | 39.30/0.9792 | 41.15/0.9859 | 35.16/0.9354 |
Methods | CS ratio | ||||||
---|---|---|---|---|---|---|---|
4% | 10% | 25% | 30% | 40% | 50% | Average | |
TVAL3 | 18.15/0.4291 | 22.31/0.4655 | 27.75/0.7628 | 28.84/0.8214 | 31.74/0.8846 | 34.64/0.9315 | 27.24/0.7158 |
ReconNet | 20.37/0.5514 | 23.74/0.7044 | 26.25/0.8402 | 28.07/0.8929 | 30.62/0.9131 | 32.98/0.9394 | 27.01/0.8069 |
ISTA-Net+ | 19.66/0.5370 | 19.66/0.7238 | 28.93/0.8840 | 30.21/0.9079 | 32.43/0.9377 | 34.43/0.9571 | 27.55/0.8245 |
DPA-Net | 21.64/0.6498 | 24.55/0.7841 | 28.80/0.8944 | 29.47/0.9034 | 31.09/0.9311 | 32.08/0.9447 | 27.93/0.8513 |
AMP-Net | 21.89/0.6340 | 26.04/0.8151 | 30.89/0.9202 | 32.19/0.9365 | 34.37/0.9578 | 36.33/0.9712 | 30.28/0.8724 |
OPINE-Net+ | 23.00/0.7020 | 26.93/0.8397 | 31.86/0.9308 | 32.58/0.9414 | 33.88/0.9445 | 37.23/0.9741 | 30.91/0.8882 |
COAST | -/- | 25.94/0.8035 | 31.10/0.9168 | 32.23/0.9321 | 34.22/0.9530 | 35.99/0.9665 | -/- |
TransCS | 23.23/0.7018 | 26.72/0.8413 | 31.72/0.9330 | 31.95/0.9381 | 35.22/0.9648 | 37.20/0.9734 | 31.00/0.8920 |
SODAS-Net | 22.69/0.6991 | 25.65/0.7739 | 31.49/0.9190 | 32.90/0.9376 | 35.09/0.9583 | 37.23/0.9736 | 30.84/0.8769 |
DPC-DUN | 23.02/0.7023 | 26.99/0.8345 | 32.36/0.9323 | 33.53/0.9449 | 35.61/0.9624 | 37.52/0.9737 | 31.51/0.8916 |
AMAUN-CS | 23.89/0.7354 | 27.98/0.8684 | 32.54/0.9450 | 33.30/0.9435 | 36.76/0.9729 | 37.42/0.9724 | 31.98/0.9062 |
AMAUN-CS+ | 24.04/0.7411 | 28.07/0.8710 | 32.75/0.9468 | 33.61/0.9457 | 37.01/0.9755 | 38.52/0.9784 | 32.33/0.9098 |
Methods | CS Ratio | ||||||
---|---|---|---|---|---|---|---|
4% | 10% | 25% | 30% | 40% | 50% | Average | |
TVAL3 | 17.86/0.4261 | 19.26/0.4758 | 21.27/0.7204 | 22.34/0.7764 | 25.39/0.8531 | 29.59/0.8957 | 22.62/0.6912 |
ReconNet | 21.66/0.4994 | 23.88/0.6400 | 25.75/0.7317 | 26.72/0.7870 | 28.96/0.8499 | 30.13/0.8499 | 25.87/0.8499 |
ISTA-Net+ | 22.17/0.5486 | 25.32/0.7022 | 29.36/0.8525 | 30.20/0.8771 | 32.21/0.9321 | 34.04/0.9424 | 28.88/0.8095 |
DPA-Net | 23.27/0.6096 | 25.02/0.6958 | 28.73/0.8814 | 29.93/0.8722 | 31.85/0.9128 | 33.60/0.9401 | 28.73/0.8186 |
AMP-Net | 25.40/0.6985 | 27.86/0.7926 | 31.74/0.9048 | 32.84/0.9240 | 33.10/0.9383 | 35.02/0.9510 | 30.99/0.8682 |
OPINE-Net+ | 25.00/0.6825 | 27.82/0.8045 | 31.51/0.9061 | 32.35/0.9215 | 33.45/0.9412 | 36.47/0.9669 | 31.10/0.8704 |
COAST | -/- | 26.28/0.7422 | 29.00/0.8413 | 31.06/0.8934 | 32.93/0.9267 | 34.74/0.9497 | -/- |
TransCS | 25.28/0.6881 | 27.93/0.8141 | 31.84/0.9154 | 32.66/0.9303 | 34.94/0.9559 | 36.94/0.9711 | 31.59/0.8780 |
SODAS-Net | 24.69/0.7838 | 26.59/0.7528 | 30.62/0.8818 | 31.69/0.9052 | 33.67/0.9360 | 35.54/0.9568 | 30.46/0.8694 |
DPC-DUN | 24.90/0.7856 | 26.79/0.7611 | 30.71/0.8828 | 31.76/0.9051 | 33.70/0.9364 | 35.62/0.9573 | 30.58/0.8713 |
AMAUN-CS | 25.67/0.7921 | 27.96/0.8132 | 31.92/0.9161 | 33.62/0.9399 | 35.68/0.9611 | 37.71/0.9748 | 32.09/0.8995 |
AMAUN-CS+ | 25.72/0.7945 | 28.10/0.8210 | 32.10/0.9213 | 34.20/0.9469 | 36.01/0.9630 | 37.85/0.9802 | 32.33/0.9044 |
Method | Running Time(s) | Params(M) | FLOPs(G) |
---|---|---|---|
ISTA-Net+ | 0.0188 | 1.112 | 405.12 |
AMP-Net | 0.0564 | 1.529 | 434.84 |
OPINE-Net+ | 0.0156 | 1.095 | 384.34 |
TransCS | 0.0286 | 1.916 | 564.86 |
AMAUN-CS | 0.0143 | 0.554 | 264.20 |
AMAUN-CS+ | 0.0172 | 1.103 | 396.70 |
Cases | CAAGDM | LDGDM | DMTM | PSNR/SSIM |
---|---|---|---|---|
(a) | × | × | × | 38.06/0.9706 |
(b) | √ | × | × | 40.12/0.9781 |
(c) | × | √ | × | 39.54/0.9742 |
(d) | √ | √ | × | 41.00/0.9830 |
(e) | √ | √ | √ | 41.15/0.9859 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, M.; Ning, D.; Yang, S. Adaptive Memory-Augmented Unfolding Network for Compressed Sensing. Sensors 2024, 24, 8085. https://doi.org/10.3390/s24248085
Feng M, Ning D, Yang S. Adaptive Memory-Augmented Unfolding Network for Compressed Sensing. Sensors. 2024; 24(24):8085. https://doi.org/10.3390/s24248085
Chicago/Turabian StyleFeng, Mingkun, Dongcan Ning, and Shengying Yang. 2024. "Adaptive Memory-Augmented Unfolding Network for Compressed Sensing" Sensors 24, no. 24: 8085. https://doi.org/10.3390/s24248085
APA StyleFeng, M., Ning, D., & Yang, S. (2024). Adaptive Memory-Augmented Unfolding Network for Compressed Sensing. Sensors, 24(24), 8085. https://doi.org/10.3390/s24248085