MR Elastography Using the Gravitational Transducer
Abstract
:1. Introduction
2. Shear Wave Generation: MR Elastography Transducer
3. MR Elastography Sequence
4. MR Elastography Reconstruction
5. MR Elastography Examples Using the Gravitational Transducer
5.1. Ultrasound Gel Phantom
5.2. Liver
5.3. Kidney and Prostate
5.4. Breast
5.5. Brain
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ophir, J.; Cespedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 1991, 13, 111–134. [Google Scholar] [CrossRef] [PubMed]
- Lewa, G.J. Elastic properties imaging by periodical displacement NMR measurements (EPMRI). Proc. Ultrason. Symp. IEEE 1994, 2, 691–694. [Google Scholar]
- Muthupillai, R.; Lomas, D.J.; Rossman, P.J.; Greenleaf, J.F.; Manduca, A.; Ehman, R.L. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995, 269, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Sinkus, R.; Lorenzen, J.; Schrader, D.; Lorenzen, M.; Dargatz, M.; Holz, D. High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 2000, 45, 1649–1664. [Google Scholar] [CrossRef]
- Allen, A.M.; Shah, V.H.; Therneau, T.M.; Venkatesh, S.K.; Mounajjed, T.; Larson, J.J.; Mara, K.C.; Schulte, P.J.; Kellogg, T.A.; Kendrick, M.L.; et al. The Role of Three-Dimensional Magnetic Resonance Elastography in the Diagnosis of Nonalcoholic Steatohepatitis in Obese Patients Undergoing Bariatric Surgery. Hepatology 2020, 71, 510–521. [Google Scholar] [CrossRef]
- Sinkus, R.; Lambert, S.; Abd-Elmoniem, K.Z.; Morse, C.; Heller, T.; Guenthner, C.; Ghanem, A.M.; Holm, S.; Gharib, A.M. Rheological determinants for simultaneous staging of hepatic fibrosis and inflammation in patients with chronic liver disease. NMR Biomed. 2018, 31, e3956. [Google Scholar] [CrossRef]
- McKnight, A.L.; Kugel, J.L.; Rossman, P.J.; Manduca, A.; Hartmann, L.C.; Ehman, R.L. MR elastography of breast cancer: Preliminary results. AJR Am. J. Roentgenol. 2002, 178, 1411–1417. [Google Scholar] [CrossRef]
- Bunevicius, A.; Schregel, K.; Sinkus, R.; Golby, A.; Patz, S. REVIEW: MR elastography of brain tumors. Neuroimage Clin. 2020, 25, 102109. [Google Scholar] [CrossRef]
- Fløgstad Svensson, S.; Fuster-Garcia, E.; Latysheva, A.; Fraser-Green, J.; Nordhøy, W.; Darwish, O.I.; Hovden, I.T.; Holm, S.; Vik-Mo, E.O.; Sinkus, R.; et al. Decreased tissue stiffness in glioblastoma by MR elastography is associated with increased cerebral blood flow. Eur. J. Radiol. 2022, 147, 110136. [Google Scholar] [CrossRef]
- Glaser, K.J.; Manduca, A.; Ehman, R.L. Review of MR elastography applications and recent developments. J. Magn. Reason. Imaging 2012, 36, 757–774. [Google Scholar] [CrossRef]
- Rump, J.; Klatt, D.; Braun, J.; Warmuth, C.; Sack, I. Fractional encoding of harmonic motions in MR elastography. Magn. Reason. Med. 2007, 57, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Guenthner, C.; Sethi, S.; Troelstra, M.; Dokumaci, A.S.; Sinkus, R.; Kozerke, S. Ristretto MRE: A generalized multi-shot GRE-MRE sequence. NMR Biomed. 2019, 32, e4049. [Google Scholar] [CrossRef] [PubMed]
- Uffmann, K.; Ladd, M. Actuation Systems for MR Elastography. Eng. Med. Biol. Mag. IEEE 2008, 27, 28–34. [Google Scholar] [CrossRef]
- Muthupillai, R.; Rossman, P.J.; Lomas, D.J.; Greenleaf, J.F.; Riederer, S.J.; Ehman, R.L. Magnetic resonance imaging of transverse acoustic strain waves. Magn. Reason. Med. 1996, 36, 266–274. [Google Scholar] [CrossRef]
- Van Houten, E.E.; Doyley, M.M.; Kennedy, F.E.; Weaver, J.B.; Paulsen, K.D. Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J. Magn. Reason. Imaging 2003, 17, 72–85. [Google Scholar] [CrossRef]
- Yin, M.; Talwalkar, J.A.; Glaser, K.J.; Manduca, A.; Grimm, R.C.; Rossman, P.J.; Fidler, J.L.; Ehman, R.L. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin. Gastroenterol. Hepatol. 2007, 5, 1207–1213.e2. [Google Scholar] [CrossRef]
- Dittmann, F.; Tzschätzsch, H.; Hirsch, S.; Barnhill, E.; Braun, J.; Sack, I.; Guo, J. Tomoelastography of the abdomen: Tissue mechanical properties of the liver, spleen, kidney, and pancreas from single MR elastography scans at different hydration states. Magn. Reson. Med. 2017, 78, 976–983. [Google Scholar] [CrossRef]
- Runge, J.H.; Hoelzl, S.H.; Sudakova, J.; Dokumaci, A.S.; Nelissen, J.L.; Guenthner, C.; Lee, J.; Troelstra, M.; Fovargue, D.; Stoker, J.; et al. A novel magnetic resonance elastography transducer concept based on a rotational eccentric mass: Preliminary experiences with the gravitational transducer. Phys. Med. Biol. 2019, 64, 045007. [Google Scholar] [CrossRef]
- Fovargue, D.; Kozerke, S.; Sinkus, R.; Nordsletten, D. Robust MR elastography stiffness quantification using a localized divergence free finite element reconstruction. Med. Image Anal. 2017, 44, 126–142. [Google Scholar] [CrossRef]
- Wochner, P.; Schneider, T.; Stockmann, J.; Lee, J.; Sinkus, R. Diffusion phase-imaging in anisotropic media using non-linear gradients for diffusion encoding. PLoS ONE. 2023, 18, e0281332. [Google Scholar] [CrossRef]
- Venkatesh, S.K.; Yin, M.; Ehman, R.L. Magnetic resonance elastography of liver: Technique, analysis, and clinical applications. J. Magn. Reson. Imaging 2013, 37, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Guenthner, C.; Runge, J.H.; Sinkus, R.; Kozerke, S. Hadamard Encoding for Magnetic Resonance Elastography. In Proceedings of the 25th Annual Meeting ISMRM, Honolulu, HI, USA, 22–27 April 2017. Abstract #1378. [Google Scholar]
- Garteiser, P.; Sahebjavaher, R.S.; Ter Beek, L.C.; Salcudean, S.; Vilgrain, V.; Van Beers, B.E.; Sinkus, R. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR Biomed. 2013, 26, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Barth, M.; Breuer, F.; Koopmans, P.J.; Norris, D.G.; Poser, B.A. Simultaneous multislice (SMS) imaging techniques. Magn. Reson. Med. 2016, 75, 63–81. [Google Scholar] [CrossRef]
- Darwish, O.I.; Gharib, A.M.; Jeljeli, S.; Metwalli, N.S.; Feeley, J.B.; Rotman, Y.M.; Brown, R.J.M.; Ouwerkerk, R.; Kleiner, D.E.; Stäb, D.; et al. Single Breath-Hold 3-Dimensional Magnetic Resonance Elastography Depicts Liver Fibrosis and Inflammation in Obese Patients. Investig. Radiol. 2023, 58, 413–419. [Google Scholar] [CrossRef]
- Johnson, C.L.; McGarry, M.D.; Van Houten, E.E.; Weaver, J.B.; Paulsen, K.D.; Sutton, B.P.; Georgiadis, J.G. Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction. Magn. Reson. Med. 2013, 70, 404–412. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Theory of Elasticity, 2nd ed.; Course of theoretical physics; Pergamon: Oxford, UK, 1970; Volume viii, 165p. [Google Scholar]
- Bhatia, H.; Norgard, G.; Pascucci, V.; Bremer, P.T. The Helmholtz-Hodge Decomposition—A Survey. IEEE Trans. Vis. Comput. Graph. 2013, 19, 1386–1404. [Google Scholar] [CrossRef]
- Sinkus, R.; Siegmann, K.; Xydeas, T.; Tanter, M.; Claussen, C.; Fink, M. MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Reson. Med. 2007, 58, 1135–1144. [Google Scholar] [CrossRef]
- Manduca, A.; Lake, D.S.; Kruse, S.A.; Ehman, R.L. Spatio-temporal directional filtering for improved inversion of MR elastography images. Med. Image Anal. 2003, 7, 465–473. [Google Scholar] [CrossRef]
- Van Houten, E.E.; Miga, M.I.; Weaver, J.B.; Kennedy, F.E.; Paulsen, K.D. Three-dimensional subzone-based reconstruction algorithm for MR elastography. Magn. Reson. Med. 2001, 45, 827–837. [Google Scholar] [CrossRef]
- Verdier, C. Rheological Properties of Living Materials. From Cells to Tissues. J. Theor. Med. 2003, 5, 67–91. [Google Scholar] [CrossRef]
- Schiessel, H.; Blumen, A. Mesoscopic Pictures of the Sol-Gel Transition—Ladder Models and Fractal Networks. Macromolecules 1995, 28, 4013–4019. [Google Scholar] [CrossRef]
- Holm, S. Waves with Power-Law Attenuation; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Lambert, S.A.; Nasholm, S.P.; Nordsletten, D.; Michler, C.; Juge, L.; Serfaty, J.-M.; Bilston, L.; Guzina, B.; Holm, S.; Sinkus, R. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion. Phys. Rev. Lett. 2015, 115, 094301. [Google Scholar] [CrossRef] [PubMed]
- Gidener, T.; Ahmed, O.T.; Larson, J.J.; Mara, K.C.; Therneau, T.M.; Venkatesh, S.K.; Ehman, R.L.; Yin, M.; Allen, A.M. Liver Stiffness by Magnetic Resonance Elastography Predicts Future Cirrhosis, Decompensation, and Death in NAFLD. Clin. Gastroenterol. Hepatol. 2021, 19, 1915–1924. [Google Scholar] [CrossRef]
- Sheka, A.C.; Adeyi, O.; Thompson, J.; Hameed, B.; Crawford, P.A.; Ikramuddin, S. Nonalcoholic Steatohepatitis: A Review. J. Am. Med. Assoc. 2020, 323, 1175–1183. [Google Scholar] [CrossRef]
- Rada, P.; Gonzalez-Rodriguez, A.; Garcia-Monzon, C.; Valverde, A.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 2020, 11, 802. [Google Scholar] [CrossRef]
- Loomba, R.; Adams, L.A. The 20% Rule of NASH Progression: The Natural History of Advanced Fibrosis and Cirrhosis Caused by NASH. Hepatology 2019, 70, 1885–1888. [Google Scholar] [CrossRef]
- Darwish, O.I.; Di Cio, P.; Sinkus, R.; Neji, R. 3D MR elastography at 0.55 T: Concomitant field effects and feasibility. Magn. Reson. Med. 2024, 1–13. [Google Scholar] [CrossRef]
- Wolf, M.; Darwish, O.; Neji, R.; Eder, M.; Sunder-Plassmann, G.; Heinz, G.; Robinson, S.D.; Schmid, A.I.; Moser, E.V.; Sinkus, R.; et al. Magnetic resonance elastography resolving all gross anatomical segments of the kidney during controlled hydration. Original Research. Front. Physiol. 2024, 15, 1327407. [Google Scholar] [CrossRef]
- Bohte, A.E.; Nelissen, J.L.; Runge, J.H.; Holub, O.; Lambert, S.; de Graaf, L.; Kolkman, S.; van der Meij, S.; Stoker, J.; Strijkers, G.; et al. Breast magnetic resonance elastography: A review of clinical work and future perspectives. NMR Biomed. 2018, 31, e3932. [Google Scholar] [CrossRef]
- Pepin, K.M.; McGee, K.P.; Arani, A.; Lake, D.; Glaser, K.; Manduca, A.; Parney, I.; Ehman, R.; Huston, J. MR Elastography Analysis of Glioma Stiffness and IDH1-Mutation Status. AJNR Am. J. Neuroradiol. 2018, 39, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Svensson, S.F.; Halldorsson, S.; Latysheva, A.; Fuster-Garcia, E.; Hjørnevik, T.; Fraser-Green, J.; Bugge, R.A.B.; Grinband, J.; Holm, S.; Sinkus, R.; et al. MR elastography identifies regions of extracellular matrix reorganization associated with shorter survival in glioblastoma patients. Neurooncol. Adv. 2023, 5, vdad021. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, L.V.; Schwarb, H.; McGarry, M.D.J.; Johnson, C.L. Aging brain mechanics: Progress and promise of magnetic resonance elastography. Neuroimage 2021, 232, 117889. [Google Scholar] [CrossRef] [PubMed]
- Wuerfel, J.; Paul, F.; Beierbach, B.; Hamhaber, U.; Klatt, D.; Papazoglou, S.; Zipp, F.; Martus, P.; Braun, J.; Sack, I. MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 2010, 49, 2520–2525. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwish, O.I.; Koch, V.; Vogl, T.J.; Wolf, M.; Schregel, K.; Purushotham, A.; Vilgrain, V.; Paradis, V.; Neji, R.; Sinkus, R. MR Elastography Using the Gravitational Transducer. Sensors 2024, 24, 8038. https://doi.org/10.3390/s24248038
Darwish OI, Koch V, Vogl TJ, Wolf M, Schregel K, Purushotham A, Vilgrain V, Paradis V, Neji R, Sinkus R. MR Elastography Using the Gravitational Transducer. Sensors. 2024; 24(24):8038. https://doi.org/10.3390/s24248038
Chicago/Turabian StyleDarwish, Omar Isam, Vitali Koch, Thomas J. Vogl, Marcos Wolf, Katharina Schregel, Arnie Purushotham, Valérie Vilgrain, Valérie Paradis, Radhouene Neji, and Ralph Sinkus. 2024. "MR Elastography Using the Gravitational Transducer" Sensors 24, no. 24: 8038. https://doi.org/10.3390/s24248038
APA StyleDarwish, O. I., Koch, V., Vogl, T. J., Wolf, M., Schregel, K., Purushotham, A., Vilgrain, V., Paradis, V., Neji, R., & Sinkus, R. (2024). MR Elastography Using the Gravitational Transducer. Sensors, 24(24), 8038. https://doi.org/10.3390/s24248038