Are Junior Tennis Players Less Exposed to Shocks and Vibrations than Adults? A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Measurement and Data Processing
2.3.1. Hand Grip Force
2.3.2. Ball Velocity
2.3.3. Shock and Soft Tissue Vibration
2.3.4. EMG Analysis
2.3.5. Statistics Analysis
3. Results
3.1. Hand Grip Force
3.2. Peak Ball Velocity
3.3. Shock and Soft Tissue Vibration
3.4. Muscular Activation of the Upper Limb
4. Discussion
4.1. Shocks and Vibrations Between Junior and Adult Players
4.2. EMG Between Junior and Adult Players
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, M.J.; Roche, D.M.; Amirabdollahian, F.; Koehn, S.; Khaiyat, O.A. The Musculoskeletal Health Benefits of Tennis. Sports Health 2020, 12, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Pluim, B.M.; Staal, J.B.; Marks, B.L.; Miller, S.; Miley, D. Health benefits of tennis. Br. J. Sports Med. 2007, 41, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Ermin, K.; Owens, S.; Ford, M.A.; Bass, M. Bone mineral density of adolescent female tennis players and nontennis players. J. Osteoporos. 2012, 20, 420–430. [Google Scholar] [CrossRef]
- Kibler, W.B.; Safran, M. Tennis injuries. Med. Sport. Sci. 2005, 48, 120–137. [Google Scholar]
- Patel, H.; Lala, S.; Helfner, B.; Wong, T.T. Tennis overuse injuries in the upper extremity. Skeletal Radiol. 2021, 50, 629–644. [Google Scholar] [CrossRef]
- Necking, L.; Dahlin, L.B.; Fridén, J.; Lundborg, G.; Lundström, R.; Thornell, L.E. Vibration-induced muscle injury. An experimental model and preliminary findings. J. Hand Surg. Br. 1992, 17, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Roetert, E.P.; Brody, H.; Dillman, C.J.; Groppel, J.L.; Schultheis, J.M. The biomechanics of tennis elbow. An integrated approach. Clin. Sports Med. 1995, 14, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Rittweger, J.; Mutschelknauss, M.; Felsenberg, D. Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin. Physiol. Funct. Imaging 2003, 23, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Viellehner, J.; Potthast, W. The Effect of Cycling-specific Vibration on Neuromuscular Performance. Med. Sci. Sports Exerc. 2021, 53, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Rogowski, I.; Creveaux, T.; Triquigneaux, S.; Macé, P.; Gauthier, F.; Sevrez, V. Tennis Racket Vibrations and Shock Transmission to the Wrist during Forehand Drive. PLoS ONE 2015, 10, 0132925. [Google Scholar] [CrossRef]
- Dines, J.S.; Bedi, A.; Williams, P.N.; Dodson, C.C.; Ellenbecker, T.S.; Altchek, D.W.; Windler, G.; Dines, D.M. Tennis injuries: Epidemiology, pathophysiology, and treatment. J. Am. Acad. Orthop. Surg. 2015, 23, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Gescheit, D.T.; Cormack, S.J.; Duffield, R.; Kovalchik, S.; Wood, T.O.; Omizzolo, M.; Reid, M. A multi-year injury epidemiology analysis of an elite national junior tennis program. J. Sci. Med. Sport 2019, 22, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Lehman, R.C. Shoulder pain in the competitive tennis player. Clin. Sports Med. 1988, 7, 309–327. [Google Scholar] [CrossRef]
- Kibler, W.B.; Safran, M.R. Musculoskeletal injuries in the young tennis player. Clin. Sports Med. 2000, 19, 781–792. [Google Scholar] [CrossRef]
- Ryu, R.K.; McCormick, J.; Jobe, F.W.; Moynes, D.R.; Antonelli, D.J. An electromyographic analysis of shoulder function in tennis players. Am. J. Sports Med. 1988, 16, 481–485. [Google Scholar] [CrossRef]
- Kibler, W.B.; Chandler, T.J.; Shapiro, R.; Conuel, M. Muscle activation in coupled scapulohumeral motions in the high performance tennis serve. Br. J. Sports Med. 2007, 41, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Rota, S.; Morel, B.; Saboul, D.; Rogowski, I.; Hautier, C. Influence of fatigue on upper limb muscle activity and performance in tennis. J. Electromyogr. Kinesiol. 2014, 24, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Andrews, J.R. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med. 2009, 39, 569–590. [Google Scholar] [CrossRef] [PubMed]
- Rhodri, S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; De Ste Croix, M.B.A. Chronological Age vs. Biological Maturation: Implications for Exercise Programming in Youth. J. Strength Cond. Res. 2017, 28, 1454–1464. [Google Scholar]
- Blok, J.H.; Stegeman, D.F. Simulated bipolar SEMG characteristics. In SENIAM 5: The State of the Art on Sensors and Sensor Placement Procedures for Surface Electromyography: A Proposal for Sensor Placement Procedures; Roessingh Research and Development: Enschede, The Netherlands, 1997; pp. 60–70. [Google Scholar]
- Lilly, J.M.; Olhede, S.C. Higher-Order Properties of Analytic Wavelets. IEEE Trans. Signal Process 2009, 57, 146–160. [Google Scholar] [CrossRef]
- Trama, R.; Hautier, C.; Souron, R.; Lapole, T.; Foure, A.; Blache, Y. Is Accelerometry an Effective Method to Assess Muscle Vibrations in Comparison to Ultrafast Ultrasonography? IEEE Trans. Biomed. Eng. 2021, 68, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Rogowski, I.; Creveaux, T.; Chèze, L.; Dumas, R. Scapulothoracic kinematics during tennis forehand drive. Sports Biomech. 2014, 13, 166–175. [Google Scholar] [CrossRef]
- Zhang, Q.; Morel, B.; Trama, R.; Hautier, C.A. Influence of Fatigue on the Rapid Hamstring/Quadriceps Force Capacity in Soccer Players. Front. Physiol. 2021, 12, 627–674. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 51. [Google Scholar] [CrossRef]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef]
- Trama, R.; Hautier, C.; Blache, Y. fctSnPM: Factorial ANOVA and post-hoc tests for Statistical nonParametric Mapping in MATLAB. J. Open Source Softw. 2021, 6, 3159. [Google Scholar] [CrossRef]
- Li, F.X.; Fewtrell, D.; Jenkins, M. String vibration dampers do not reduce racket frame vibration transfer to the forearm. J. Sports Sci. 2004, 22, 1041–1052. [Google Scholar] [CrossRef]
- Amaro, A.M.; Paulino, M.F.; Neto, M.A.; Roseiro, L. Hand-Arm Vibration Assessment and Changes in the Thermal Map of the Skin in Tennis Athletes during the Service. Int. J. Environ. Res. Public Health 2019, 16, 5117. [Google Scholar] [CrossRef] [PubMed]
- Creveaux, T.; Sevrez, V.; Coste, B.; Rogowski, I. Methodological contribution to study the vibratory behaviour of tennis rackets following real forehand drive impact. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 150–151. [Google Scholar] [CrossRef]
- Andrew, D.P.; Chow, J.W.; Knudson, D.V.; Tillman, M.D. Effect of ball size on player reaction and racket acceleration during the tennis volley. J. Sci. Med. Sport 2003, 6, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Chadefaux, D.; Rao, G.; Le Carrou, J.L.; Berton, E.; Vigouroux, L. The effects of player grip on the dynamic behaviour of a tennis racket. J. Sports Sci. 2017, 35, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Stroeder, C.L.; Noble, L.; Walker, H.S. The effect of tennis racket string vibration dampers on racket handle vibrations and discomfort following impacts. J. Sports Sci. 1999, 17, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; Wakeling, J.M. Impact forces and muscle tuning: A new paradigm. Exerc. Sport. Sci. Rev. 2001, 29, 37–41. [Google Scholar] [CrossRef]
- Boyer, K.A.; Nigg, B.M. Muscle tuning during running: Implications of an un-tuned landing. J. Biomech. Eng. 2006, 128, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Wakeling, J.M.; Liphardt, A.M.; Nigg, B.M. Muscle activity reduces soft-tissue resonance at heel-strike during walking. J. Biomech. 2003, 36, 1761–1769. [Google Scholar] [CrossRef]
- Sanchis-Moysi, J.; Idoate, F.; Olmedillas, H.; Guadalupe-Grau, A.; Alayon, S.; Carreras, A.; Calbet, J.A. The upper extremity of the professional tennis player: Muscle volumes, fiber-type distribution, and muscle strength. J. Med. Sci. Sports 2010, 20, 524–534. [Google Scholar] [CrossRef]
- Roetert, E.P.; Ellenbecker, T.S.; Brown, S.W. Shoulder internal and external rotation range of motion in nationally ranked junior tennis players: A longitudinal analysis. J. Strength Cond. Res. 2000, 14, 140–143. [Google Scholar]
- Kibler, W.B.; Chandler, T.J.; Livingston, B.P.; Roetert, E.P. Shoulder range of motion in elite tennis players. Effect of age and years of tournament play. Am. J. Sports Med. 1996, 24, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, J.; Kim, J. Electromyography-signal-based muscle fatigue assessment for knee rehabilitation monitoring systems. Biomed. Eng. Lett. 2018, 8, 345–353. [Google Scholar] [CrossRef] [PubMed]
Adult | Junior | |||||
---|---|---|---|---|---|---|
Variable | Mean ± SD | Mean ± SD | Difference [95%] | Effect Size (η2) | Qualitative Inference | |
Grip force (N) | 40.91 ± 8.30 | 23.17 ± 6.41 | −17.74 [−24.10; −11.38] | 0.269 | Large | |
Ball velocity (m/s) | 120.48 ± 33.11 | 89.19 ± 27.76 | −31.28 [−57.27; −5.30] | 0.247 | Medium | |
Shock | PA (m2.s−1) | 2849.02 ± 499.75 | 2246.71 ± 505.07 | −602.31 [−952.98; −251.65] ** | 0.11 | Medium |
MF (Hz) | 200.57 ± 45.46 | 179.65 ± 10.67 | −20.93 [−42.79; 0.93] | 0.051 | Small | |
ST (s) | 0.05 ± 0.01 | 0.04 ± 0.01 | 0 [−0.01; 0] | 0.013 | Small | |
Vibration | PA (m2.s−1) | 1609.5 ± 556.85 | 1068.68 ± 427.55 | −540.83 [−879.39; −202.26] ** | 0.091 | Medium |
MF (Hz) | 153.34 ± 15.09 | 152.58 ± 10.3 | −0.76 [−9.51; 7.98] | 0 | Small | |
ST (s) | 0.04 ± 0.01 | 0.04 ± 0.01 | 0 [0; 0] | 0.001 | Small |
Adult | Junior | ||||||
---|---|---|---|---|---|---|---|
Muscle | Phase | Variable | Mean ± SD | Mean ± SD | Difference [95% CI] | Effect Size (η2) | Qualitative Inference |
BIC | Acc | MF (Hz) | 124.16 ± 21.24 | 126.93 ± 21.14 | 2.775 [−12.69; 18.24] | 0.001 | Small |
BIC | Acc | EMGmean (%) | 20.25 ± 25.47 | 21 ± 8.6 | 0.748 [−12.59; 14.09] | 0 | Small |
BIC | Acc | iEMG (AU) | 6.07 ± 7.64 | 6.3 ± 2.58 | 0.226 [−3.78; 4.23] | 0 | Small |
BIC | Acc | EMGmax (%) | 47.6 ± 36.94 | 52.21 ± 25.72 | 4.612 [−18.05; 27.27] | 0.001 | Small |
DANT | Acc | MF (Hz) | 137.7 ± 26.38 | 126.31 ± 18.96 | −11.386 [−27.23; 4.45] | 0.02 | Small |
DANT | Acc | EMGmean (%) | 26.89 ± 17.75 | 37.82 ± 24.69 | 10.935 [−5.03; 26.9] | 0.02 | Small |
DANT | Acc | iEMG (AU) | 8.06 ± 5.33 | 11.34 ± 7.41 | 3.278 [−1.51; 8.07] | 0.028 | Small |
DANT | Acc | EMGmax (%) | 63.07 ± 36.36 | 82.24 ± 35.11 | 19.174 [−6.23; 44.58] | 0.024 | Small |
DMED | Acc | MF (Hz) | 152.72 ± 27.12 | 130.49 ± 24.86 | −22.226 [−40.71; −3.74] * | 0.058 | Small |
DMED | Acc | EMGmean (%) | 40.4 ± 15.18 | 35.74 ± 28.33 | −4.656 [−21.61; 12.3] | 0.004 | Small |
DMED | Acc | iEMG (AU) | 12.12 ± 4.55 | 10.72 ± 8.5 | −1.394 [−6.48; 3.69] | 0.005 | Small |
DMED | Acc | EMGmax (%) | 72.31 ± 26.9 | 60.01 ± 41.21 | −12.295 [−37.9; 13.31] | 0.012 | Small |
EXT | Acc | MF (Hz) | 174.83 ±16.07 | 164.01 ± 18.98 | −10.827 [−23.63; 1.98] | 0.032 | Small |
EXT | Acc | EMGmean (%) | 20.03 ± 10.6 | 24.39 ± 16.47 | 4.366 [−6.05; 14.78] | 0.003 | Small |
EXT | Acc | iEMG (AU) | 6 ± 3.18 | 7.31 ± 4.94 | 1.31 [−1.81; 4.43] | 0.005 | Small |
EXT | Acc | EMGmax (%) | 49.72 ± 31.63 | 63.24 ± 34.56 | 13.528 [−10.36; 37.42] | 0.011 | Small |
FLE | Acc | MF (Hz) | 170.54 ± 20.75 | 162 ± 14.48 | −8.542 [−21.26; 4.18] | 0.013 | Small |
FLE | Acc | EMGmean (%) | 61.98 ± 23.92 | 77.47 ± 29.35 | 15.488 [−4.85; 35.83] | 0.028 | Small |
FLE | Acc | iEMG (AU) | 18.6 ± 7.18 | 23.25 ± 8.81 | 4.647 [−1.46; 10.75] | 0.038 | Small |
FLE | Acc | EMGmax (%) | 114.78 ± 35.91 | 123.54 ± 42.35 | 8.755 [−20.92; 38.43] | 0.004 | Small |
PEC | Acc | MF (Hz) | 121.27 ± 28.65 | 103.38 ± 21.83 | −17.891 [−37.14; 1.35] | 0.035 | Small |
PEC | Acc | EMGmean (%) | 72.29 ± 28.38 | 57.12 ± 27.32 | −15.167 [−36.5; 6.16] | 0.031 | Small |
PEC | Acc | iEMG (AU) | 21.7 ± 8.52 | 17.15 ± 8.2 | −4.556 [−10.96; 1.85] | 0.036 | Small |
PEC | Acc | EMGmax (%) | 121.71 ± 40.87 | 90.33 ± 40.45 | −31.387 [−62.58; −0.19] | 0.054 | Small |
TRAP | Acc | MF (Hz) | 145.59 ± 36 | 126.24 ± 23.51 | −19.35 [−40.25; 1.55] | 0.027 | Small |
TRAP | Acc | EMGmean (%) | 28.28 ± 15.6 | 28.48 ± 20.55 | 0.206 [−12.96; 13.37] | 0 | Small |
TRAP | Acc | iEMG (AU) | 8.48 ± 4.68 | 8.54 ± 6.17 | 0.063 [−3.89; 4.02] | 0 | Small |
TRAP | Acc | EMGmax (%) | 65.25 ± 29.8 | 62.12 ± 35.95 | −3.133 [−26.78; 20.52] | 0.001 | Small |
TRI | Acc | MF (Hz) | 129.62 ± 23.27 | 122.47 ± 20.89 | −7.159 [−23.73; 9.41] | 0.006 | Small |
TRI | Acc | EMGmean (%) | 49.04 ± 24.8 | 54.81 ± 12.72 | 5.771 [−8.1; 19.64] | 0.004 | Small |
TRI | Acc | iEMG (AU) | 14.72 ± 7.45 | 16.45 ± 3.82 | 1.733 [−2.43; 5.9] | 0.006 | Small |
TRI | Acc | EMGmax (%) | 98.9 ± 38.65 | 100.14 ± 23.64 | 1.241 [−21.64; 24.13] | 0 | Small |
Adult | Junior | ||||||
---|---|---|---|---|---|---|---|
Muscle | Phase | Variable | Mean ± SD | Mean ± SD | Difference [95% CI] | Effect Size (η2) | Qualitative Inference |
BIC | Dec | MF (Hz) | 114.02 ± 22.17 | 108.89 ± 28.01 | −5.133 [−23.96; 13.7] | 0.004 | Small |
BIC | Dec | EMGmean (%) | 33.8 ± 31.67 | 45.44 ± 32.14 | 11.635 [−11.68; 34.95] | 0.015 | Small |
BIC | Dec | iEMG (AU) | 6.76 ± 6.34 | 9.09 ± 6.43 | 2.329 [−2.34; 7] | 0.011 | Small |
BIC | Dec | EMGmax (%) | 51.27 ± 41.71 | 67.09 ± 43.29 | 15.821 [−15.3; 46.94] | 0.014 | Small |
DANT | Dec | MF (Hz) | 141.94 ± 23.63 | 135.16 ± 18.79 | −6.775 [−21.63; 8.09] | 0.007 | Small |
DANT | Dec | EMGmean (%) | 43.95 ± 25.78 | 55.41 ± 20.36 | 11.458 [−4.7; 27.62] | 0.021 | Small |
DANT | Dec | iEMG (AU) | 8.79 ± 5.16 | 11.08 ± 4.07 | 2.291 [−0.94; 5.52] | 0.014 | Small |
DANT | Dec | EMGmax (%) | 66.47 ± 36.31 | 84.12 ± 31.18 | 17.657 [−6.08; 41.4] | 0.021 | Small |
DMED | Dec | MF (Hz) | 146.25 ± 28.92 | 130.75 ± 20.68 | −15.494 [−33.17; 2.18] | 0.029 | Small |
DMED | Dec | EMGmean (%) | 52.25 ± 22.26 | 45.03 ± 20.57 | −7.225 [−22.46; 8.01] | 0.009 | Small |
DMED | Dec | iEMG (AU) | 10.45 ± 4.45 | 9.01 ± 4.11 | −1.445 [−4.49; 1.6] | 0.005 | Small |
DMED | Dec | EMGmax (%) | 78.05 ± 31.64 | 63.6 ± 30.08 | −14.449 [−36.42; 7.53] | 0.016 | Small |
EXT | Dec | MF (Hz) | 148.78 ± 16.51 | 137.52 ± 18.12 | −11.263 [−23.77; 1.25] | 0.034 | Small |
EXT | Dec | EMGmean (%) | 40.66 ± 31.41 | 51.48 ± 29.41 | 10.815 [−10.74; 32.37] | 0.017 | Small |
EXT | Dec | iEMG (AU) | 8.14 ± 6.28 | 10.3 ± 5.88 | 2.162 [−2.15; 6.47] | 0.014 | Small |
EXT | Dec | EMGmax (%) | 58.82 ± 41.88 | 76.56 ± 41.79 | 17.745 [−12.1; 47.59] | 0.018 | Small |
FLE | Dec | MF (Hz) | 166.21± 24.71 | 156.64 ± 19.37 | −9.561 [−25.53; 6.41] | 0.016 | Small |
FLE | Dec | EMGmean (%) | 50.45 ± 20.03 | 67.47 ± 30.2 | 17.015 [−2.97; 37] | 0.034 | Small |
FLE | Dec | iEMG (AU) | 10.09 ± 4.01 | 13.49 ± 6.04 | 3.404 [−0.59; 7.4] | 0.021 | Small |
FLE | Dec | EMGmax (%) | 92.11 ± 25.98 | 108.75 ± 45.52 | 16.64 [−12.77; 46.05] | 0.016 | Small |
PEC | Dec | MF (Hz) | 125.37± 27.54 | 111.39 ± 21.11 | −13.98 [−32.53; 4.57] | 0.022 | Small |
PEC | Dec | EMGmean (%) | 23.97 ± 18.11 | 24.22 ± 13.86 | 0.255 [−11.93; 12.44] | 0 | Small |
PEC | Dec | iEMG (AU) | 4.79 ± 3.62 | 4.84 ± 2.77 | 0.052 [−2.38; 2.49] | 0 | Small |
PEC | Dec | EMGmax (%) | 57.85 ± 32.54 | 52.53 ± 23.67 | −5.321 [−26.78; 16.14] | 0.002 | Small |
TRAP | Dec | MF (Hz) | 160.49 ± 41.71 | 134.19 ± 28.38 | −26.299 [−50.87; −1.73] | 0.048 | Small |
TRAP | Dec | EMGmean (%) | 58.64 ± 27.24 | 52.25 ± 22.88 | −6.392 [−23.91; 11.13] | 0.007 | Small |
TRAP | Dec | iEMG (AU) | 11.73 ± 5.45 | 10.45 ± 4.58 | −1.281 [−4.79; 2.23] | 0.005 | Small |
TRAP | Dec | EMGmax (%) | 79.98 ± 34.47 | 72.33 ± 29.66 | −7.647 [−30.08; 14.78] | 0.005 | Small |
TRI | Dec | MF (Hz) | 136.9 ± 31.76 | 136.31 ± 23.48 | −0.603 [−20.99; 19.78] | 0 | Small |
TRI | Dec | EMGmean (%) | 43.99 ± 32.77 | 38.5 ± 13.72 | −5.489 [−22.95; 11.98] | 0.004 | Small |
TRI | Dec | iEMG (AU) | 8.8 ± 6.56 | 7.7 ± 2.74 | −1.099 [−4.59; 2.4] | 0.003 | Small |
TRI | Dec | EMGmax (%) | 77.06 ± 38.21 | 73.81 ± 19.91 | −3.248 [−24.71; 18.22] | 0.001 | Small |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Solliec, T.; Hautier, C.; Gassier, R.; Trama, R.; Gilbert, B.; Song, L.; Zhang, Q. Are Junior Tennis Players Less Exposed to Shocks and Vibrations than Adults? A Pilot Study. Sensors 2024, 24, 7999. https://doi.org/10.3390/s24247999
Le Solliec T, Hautier C, Gassier R, Trama R, Gilbert B, Song L, Zhang Q. Are Junior Tennis Players Less Exposed to Shocks and Vibrations than Adults? A Pilot Study. Sensors. 2024; 24(24):7999. https://doi.org/10.3390/s24247999
Chicago/Turabian StyleLe Solliec, Tom, Christophe Hautier, Robin Gassier, Robin Trama, Benoit Gilbert, Lin Song, and Qingshan Zhang. 2024. "Are Junior Tennis Players Less Exposed to Shocks and Vibrations than Adults? A Pilot Study" Sensors 24, no. 24: 7999. https://doi.org/10.3390/s24247999
APA StyleLe Solliec, T., Hautier, C., Gassier, R., Trama, R., Gilbert, B., Song, L., & Zhang, Q. (2024). Are Junior Tennis Players Less Exposed to Shocks and Vibrations than Adults? A Pilot Study. Sensors, 24(24), 7999. https://doi.org/10.3390/s24247999