Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions †
Abstract
:1. Introduction
1.1. Background
1.2. Alternative State-of-the-Art Approaches
- They rely on preoperative 3D imaging (MRI) for planning;
- They involve image-based tissue penetration detection, which is prone to error due to large deformations of the soft tissue [8];
- An imaging device needs to be integrated with the robot controller.
1.3. Objectives and Contributions
- A novel needle driver system compatible with a commercial medical robot was designed and prototyped, and its performance was validated for ENI tasks;
- A novel hardware–software integrated system utilizing the proposed needle driver system was developed and integrated with the commercial robot;
- The authors’ impedance-matching method was extended to be usable for ENI procedures, and its accuracy in force rendering was studied;
- The integrated system was tested for usability and performance in a multi-user study.
2. Methodology
2.1. Proposed System Architecture
2.2. Needle Driver Design
2.3. Cartesian Admittance Controller
2.4. Arm Telepositioning Controller
2.5. Needle Insertion Force Controller
2.6. IM Force Estimation and Rendering
2.7. Augmented Reality
2.8. Digital Twin Registration
3. Validation Studies
3.1. Setup
3.2. Protocol
4. Results and Discussion
4.1. Needle Penetration Depth
4.2. Force Rendering
4.3. User Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beigi, P. Image-Based Enhancement and Tracking of An Epidural Needle in Ultrasound Using Time-Series Analysis. Ph.D. Thesis, University of British Columbia, Kelowna, BC, Canada, 2017. [Google Scholar]
- Sprigge, J.; Harper, S. Accidental dural puncture and post dural puncture headache in obstetric anaesthesia: Presentation and management: A 23-year survey in a district general hospital. Anaesthesia 2008, 63, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Capogna, G. Epidural Technique in Obstetric Anesthesia; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Li, G.; Patel, N.A.; Hagemeister, J.; Yan, J.; Wu, D.; Sharma, K.; Cleary, K.; Iordachita, I. Body-mounted robotic assistant for MRI-guided low back pain injection. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Eappen, S.; Blinn, A.; Segal, S. Incidence of epidural catheter replacement in parturients: A retrospective chart review. Int. J. Obstet. Anesth. 1998, 7, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Adler, D.K. Ultrasound-assisted lumbar puncture in pediatric emergency medicine. J. Emerg. Med. 2014, 47, 59–64. [Google Scholar] [CrossRef]
- Khadem, M.; Rossa, C.; Usmani, N.; Sloboda, R.S.; Tavakoli, M. Geometric control of 3D needle steering in soft-tissue. Automatica 2019, 101, 36–43. [Google Scholar] [CrossRef]
- Liu, W.; Carriere, J.; Meyer, T.; Sloboda, R.; Husain, S.; Usmani, N.; Yang, Z.; Tavakoli, M. Intraoperative optimization of seed implantation plan in breast brachytherapy. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1027–1035. [Google Scholar] [CrossRef]
- Yang, C.; Xie, Y.; Liu, S.; Sun, D. Force modeling, identification, and feedback control of robot-assisted needle insertion: A survey of the literature. Sensors 2018, 18, 561. [Google Scholar] [CrossRef]
- Siepel, F.J.; Maris, B.; Welleweerd, M.K.; Groenhuis, V.; Fiorini, P.; Stramigioli, S. Needle and biopsy robots: A review. Curr. Robot. Rep. 2021, 2, 73–84. [Google Scholar] [CrossRef]
- Asgar-Deen, D.; Carriere, J.; Wiebe, E.; Peiris, L.; Duha, A.; Tavakoli, M. Augmented Reality Guided Needle Biopsy of Soft Tissue: A Pilot Study. Front. Robot. AI 2020, 7, 72. [Google Scholar] [CrossRef]
- Carriere, J.; Khadem, M.; Rossa, C.; Usmani, N.; Sloboda, R.; Tavakoli, M. Surgeon-in-the-loop 3-d needle steering through ultrasound-guided feedback control. IEEE Robot. Autom. Lett. 2017, 3, 469–476. [Google Scholar] [CrossRef]
- Carrier, J.; Khadem, M.; Rossa, C.; Usmani, N.; Sloboda, R.S.; Tavakoli, M. Event-triggered 3d needle control using a reduced-order computationally efficient bicycle model in a constrained optimization framework. J. Med. Robot. Res. 2019, 4, 1842004. [Google Scholar] [CrossRef]
- Groenhuis, V.; Siepel, F.J.; Veltman, J.; van Zandwijk, J.K.; Stramigioli, S. Stormram 4: An MR safe robotic system for breast biopsy. Ann. Biomed. Eng. 2018, 46, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- Groenhuis, V.; Siepel, F.J.; Stramigioli, S. Sunram 5: A magnetic resonance-safe robotic system for breast biopsy, driven by pneumatic stepper motors. In Handbook of Robotic and Image-Guided Surgery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 375–396. [Google Scholar]
- Nikolaev, A.; Hansen, H.H.; De Jong, L.; Mann, R.; Tagliabue, E.; Maris, B.; Groenhuis, V.; Siepel, F.; Caballo, M.; Sechopoulos, I.; et al. Ultrasound-guided breast biopsy of ultrasound occult lesions using multimodality image co-registration and tissue displacement tracking. In Proceedings of the Medical Imaging 2019: Ultrasonic Imaging and Tomography, San Diego, CA, USA, 17–18 February 2019; Volume 10955, pp. 205–213. [Google Scholar]
- Hoelscher, J.; Fu, M.; Fried, I.; Emerson, M.; Ertop, T.E.; Rox, M.; Kuntz, A.; Akulian, J.A.; Webster, R.J., III; Alterovitz, R. Backward planning for a multi-stage steerable needle lung robot. IEEE Robot. Autom. Lett. 2021, 6, 3987–3994. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Eichberg, D.G.; Cordeiro, J.G.; Di, L.; Eliahu, K.; Shah, A.H.; Luther, E.M.; Lu, V.M.; Komotar, R.J.; Ivan, M.E. Robotic guidance platform for laser interstitial thermal ablation and stereotactic needle biopsies: A single center experience. J. Robot. Surg. 2022, 16, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, E.; Shochat, M.; Roth, I.; Nissenbaum, I.; Sosna, J.; Goldberg, S.N. Evaluation of a CT-guided robotic system for precise percutaneous needle insertion. J. Vasc. Interv. Radiol. 2018, 29, 1440–1446. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Li, Y.; Zhang, J. A novel manipulator with needle insertion forces feedback for robot-assisted lumbar puncture. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, e2226. [Google Scholar] [CrossRef]
- Jolaei, M.; Hooshiar, A.; Dargahi, J. Displacement-based model for estimation of contact force between rfa catheter and atrial tissue with ex-vivo validation. In Proceedings of the 2019 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Ottawa, ON, Canada, 17–18 June 2019; pp. 1–7. [Google Scholar]
- Hooshiar, A.; Sayadi, A.; Jolaei, M.; Dargahi, J. Analytical tip force estimation on tendon-driven catheters through inverse solution of cosserat rod model. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 1829–1834. [Google Scholar]
- Bandari, N.M.; Hooshair, A.; Packirisamy, M.; Dargahi, J. Optical fiber array sensor for lateral and circumferential force measurement suitable for minimally invasive surgery: Design, modeling and analysis. In Proceedings of the Specialty Optical Fibers; Optica Publishing Group: Washington, DC, USA, 2016; p. JTu4A.44. [Google Scholar]
- Torkaman, T.; Roshanfar, M.; Dargahi, J.; Hooshiar, A. Embedded six-dof force–torque sensor for soft robots with learning-based calibration. IEEE Sensors J. 2023, 23, 4204–4215. [Google Scholar] [CrossRef]
- Mehrjouyan, A.; Menhaj, M.B.; Hooshiar, A. Safety-enhanced observer-based adaptive fuzzy synchronization control framework for teleoperation systems. Eur. J. Control 2023, 73, 100885. [Google Scholar] [CrossRef]
- Mehrjouyan, A.; Menhaj, M.B.; Hooshiar, A. Adaptive-neural command filtered synchronization control of tele-robotic systems using disturbance observer with safety enhancement. J. Frankl. Inst. 2024, 361, 107036. [Google Scholar] [CrossRef]
- Masoumi, N.; Ramos, A.C.; Torkaman, T.; Feldman, L.S.; Barralet, J.; Dargahi, J.; Hooshiar, A. Embedded Force Sensor for Soft Robots With Deep Transformation Calibration. IEEE Trans. Med. Robot. Bionics 2024, 6, 1363–1374. [Google Scholar] [CrossRef]
- Torkaman, T.; Roshanfar, M.; Dargahi, J.; Hooshiar, A. Analytical modeling and experimental validation of a gelatin-based shape sensor for soft robots. In Proceedings of the 2022 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 13–15 April 2022; pp. 1–7. [Google Scholar]
- Roshanfar, M.; Dargahi, J.; Hooshiar, A. Toward semi-autonomous stiffness adaptation of pneumatic soft robots: Modeling and validation. In Proceedings of the 2021 IEEE International Conference on Autonomous Systems (ICAS), Montréal, QC, Canada, 11–13 August 2021; pp. 1–5. [Google Scholar]
- Roshanfar, M.; Sayadi, A.; Dargahi, J.; Hooshiar, A. Stiffness adaptation of a hybrid soft surgical robot for improved safety in interventional surgery. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine &Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 4853–4859. [Google Scholar]
- Roshanfar, M.; Taki, S.; Sayadi, A.; Cecere, R.; Dargahi, J.; Hooshiar, A. Hyperelastic modeling and validation of hybrid-actuated soft robot with pressure-stiffening. Micromachines 2023, 14, 900. [Google Scholar] [CrossRef] [PubMed]
- Hooshiar, A.; Najarian, S.; Dargahi, J. Haptic telerobotic cardiovascular intervention: A review of approaches, methods, and future perspectives. IEEE Rev. Biomed. Eng. 2019, 13, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Kazemipour, N.; Sayadi, A.; Cecere, R.; Barralet, J.; Hooshiar, A. Augmented Reality-Assisted Epidural Needle Insertion: User Experience and Performance. In Proceedings of the 15th Hamlyn Symposium on Medical Robotics, London, UK, 26–29 June 2023; pp. 25–26. [Google Scholar]
- Bergholz, M.; Ferle, M.; Weber, B.M. The benefits of haptic feedback in robot-assisted surgery and their moderators: A meta-analysis. Sci. Rep. 2023, 13, 19215. [Google Scholar] [CrossRef] [PubMed]
- Kazemipour, N.; Hooshiar, A.; Kersten-Oertel, M. A usability analysis of augmented reality and haptics for surgical planning. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 2069–2078. [Google Scholar] [CrossRef]
- Vadalà, G.; De Salvatore, S.; Ambrosio, L.; Russo, F.; Papalia, R.; Denaro, V. Robotic spine surgery and augmented reality systems: A state of the art. Neurospine 2020, 17, 88. [Google Scholar] [CrossRef]
- Morimoto, T.; Kobayashi, T.; Hirata, H.; Otani, K.; Sugimoto, M.; Tsukamoto, M.; Yoshihara, T.; Ueno, M.; Mawatari, M. XR (extended reality: Virtual reality, augmented reality, mixed reality) technology in spine medicine: Status quo and quo vadis. J. Clin. Med. 2022, 11, 470. [Google Scholar] [CrossRef]
- Malhotra, S.; Halabi, O.; Dakua, S.P.; Padhan, J.; Paul, S.; Palliyali, W. Augmented reality in surgical navigation: A review of evaluation and validation metrics. Appl. Sci. 2023, 13, 1629. [Google Scholar] [CrossRef]
- Gibby, J.; Cvetko, S.; Javan, R.; Parr, R.; Gibby, W. Use of augmented reality for image-guided spine procedures. Eur. Spine J. 2020, 29, 1823–1832. [Google Scholar] [CrossRef]
- Elmi-Terander, A.; Skulason, H.; Söderman, M.; Racadio, J.; Homan, R.; Babic, D.; van der Vaart, N.; Nachabe, R. Surgical navigation technology based on augmented reality and integrated 3D intraoperative imaging: A spine cadaveric feasibility and accuracy study. Spine 2016, 41, E1303. [Google Scholar] [CrossRef]
- Azad, T.D.; Warman, A.; Tracz, J.A.; Hughes, L.P.; Judy, B.F.; Witham, T.F. Augmented reality in spine surgery–past, present, and future. Spine J. 2024, 24, 1–13. [Google Scholar] [CrossRef]
- Edström, E.; Burström, G.; Omar, A.; Nachabe, R.; Söderman, M.; Persson, O.; Gerdhem, P.; Elmi-Terander, A. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine 2020, 45, E45–E53. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Song, Y.; Yin, X.; Zhang, L.; Tamiya, T.; Hirata, H.; Ishihara, H. A novel robot-assisted endovascular catheterization system with haptic force feedback. IEEE Trans. Robot. 2019, 35, 685–696. [Google Scholar] [CrossRef]
- Ravali, G.; Manivannan, M. Haptic feedback in needle insertion modeling and simulation. IEEE Rev. Biomed. Eng. 2017, 10, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Meli, L.; Pacchierotti, C.; Prattichizzo, D. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation. Int. J. Med. Robot. Comput. Assist. Surg. 2017, 13, e1809. [Google Scholar] [CrossRef]
- Sayadi, A.; Hooshiar, A.; Dargahi, J. Impedance matching approach for robust force feedback rendering with application in robot-assisted interventions. In Proceedings of the 2020 8th International Conference on Control, Mechatronics and Automation (ICCMA), Moscow, Russia, 6–8 November 2020; pp. 18–22. [Google Scholar]
Group | Needle Penetration Depth Mean (mm) | Repeatability Standard Deviation (mm) | Success (%) | TOC * (s) |
---|---|---|---|---|
MAN | 4.3 | 1.8 | 94% | 18 ± 14 |
ROB | 1.7 | 1.3 | 76% | 16 ± 4 |
ROB + AR | 1.03 | 0.77 | 100% | 7 ± 2 |
Change | −39% ★ | −40% ★ | +24% ★ | −56% ★ |
Metric | Demand | Performance | Effort | Frustration | ||
---|---|---|---|---|---|---|
Mental | Physical | Temporal | ||||
Weights | 7 | 5 | 5 | 10 | 5 | 8 |
Group | Participant | Demand | Performance | Effort | Frustration | Task Load | ||
---|---|---|---|---|---|---|---|---|
Mental | Physical | Temporal | ||||||
MAN | Participant 1 | 75 | 30 | 85 | 40 | 90 | 80 | 64.75 |
Participant 2 | 60 | 45 | 75 | 55 | 75 | 95 | 67.63 | |
Participant 3 | 85 | 50 | 75 | 35 | 70 | 90 | 66.00 | |
Participant 4 | 80 | 65 | 95 | 45 | 90 | 80 | 72.50 | |
Participant 5 | 75 | 40 | 80 | 50 | 60 | 90 | 66.13 | |
Mean | 75 | 46 | 82 | 45 | 77 | 87 | 67.40 | |
ROB | Participant 1 | 70 | 10 | 65 | 25 | 50 | 95 | 53.13 |
Participant 2 | 65 | 35 | 65 | 30 | 25 | 80 | 50.50 | |
Participant 3 | 90 | 25 | 70 | 45 | 50 | 75 | 60.13 | |
Participant 4 | 80 | 40 | 60 | 20 | 45 | 85 | 54.13 | |
Participant 5 | 50 | 25 | 70 | 35 | 40 | 75 | 49.38 | |
Mean | 71 | 27 | 66 | 31 | 42 | 82 | 53.45 | |
ROB + AR | Participant 1 | 75 | 30 | 65 | 25 | 40 | 70 | 50.25 |
Participant 2 | 65 | 15 | 60 | 30 | 30 | 80 | 48.00 | |
Participant 3 | 80 | 35 | 70 | 40 | 25 | 60 | 52.25 | |
Participant 4 | 70 | 25 | 50 | 25 | 35 | 75 | 47.25 | |
Participant 5 | 60 | 30 | 65 | 30 | 35 | 60 | 46.25 | |
Mean | 70 | 27 | 62 | 30 | 33 | 69 | 48.80 | |
Mean difference (MAN − ROB) | 4 | 19 | 16 | 14 | 35 | 5 | 13.95 | |
Mean difference (MAN − ROB + AR) | 5 | 19 | 20 | 15 | 44 | 18 | 18.60 | |
Mean difference (ROB−ROB + AR) | 1 | 0 | 4 | 1 | 9 | 13 | 4.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayadi, A.; Cecere, R.; Barralet, J.; Feldman, L.S.; Hooshiar, A. Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions. Sensors 2024, 24, 7959. https://doi.org/10.3390/s24247959
Sayadi A, Cecere R, Barralet J, Feldman LS, Hooshiar A. Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions. Sensors. 2024; 24(24):7959. https://doi.org/10.3390/s24247959
Chicago/Turabian StyleSayadi, Amir, Renzo Cecere, Jake Barralet, Liane S. Feldman, and Amir Hooshiar. 2024. "Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions" Sensors 24, no. 24: 7959. https://doi.org/10.3390/s24247959
APA StyleSayadi, A., Cecere, R., Barralet, J., Feldman, L. S., & Hooshiar, A. (2024). Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions. Sensors, 24(24), 7959. https://doi.org/10.3390/s24247959