Comparison of Mean Values and Entropy in Accelerometry Time Series from Two Microtechnology Sensors Recorded at 100 vs. 1000 Hz During Cumulative Tackles in Young Elite Rugby League Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Equipment
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roe, G.; Halkier, M.; Beggs, C.; Till, K.; Jones, B. The Use of Accelerometers to Quantify Collisions and Running Demands of Rugby Union Match-Play. Int. J. Perform. Anal. Sport 2016, 16, 590–601. [Google Scholar] [CrossRef]
- MacLeod, S.J.; Hagan, C.; Egana, M.; Davis, J.; Drake, D. The Use of Microtechnology to Monitor Collision Performance in Professional Rugby Union. Int. J. Sports Physiol. Perform. 2018, 13, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Gastin, P.B.; McLean, O.C.; Breed, R.V.P.; Spittle, M. Tackle and Impact Detection in Elite Australian Football Using Wearable Microsensor Technology. J. Sports Sci. 2014, 32, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Roe, G.; Darrall-Jones, J.; Till, K.; Phibbs, P.; Read, D.; Weakley, J.; Rock, A.; Jones, B. The Effect of Physical Contact on Changes in Fatigue Markers Following Rugby Union Field-Based Training. Eur. J. Sport Sci. 2017, 17, 647–655. [Google Scholar] [CrossRef]
- Paul, L.; Naughton, M.; Jones, B.; Davidow, D.; Patel, A.; Lambert, M.; Hendricks, S. Quantifying Collision Frequency and Intensity in Rugby Union and Rugby Sevens: A Systematic Review. Sports Med. Open 2022, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- McLean, B.D.; Cummins, C.; Conlan, G.; Duthie, G.; Coutts, A.J. The Fit Matters: Influence of Accelerometer Fitting and Training Drill Demands on Load Measures in Rugby League Players. Int. J. Sports Physiol. Perform. 2018, 13, 1083–1089. [Google Scholar] [CrossRef]
- Whitehead, S.; Till, K.; Weaving, D.; Jones, B. The Use of Microtechnology to Quantify the Peak Match Demands of the Football Codes: A Systematic Review. Sports Med. 2018, 48, 2549–2575. [Google Scholar] [CrossRef]
- Varley, M.C.; Fairweather, I.H.; Aughey, R.J. Validity and Reliability of GPS for Measuring Instantaneous Velocity during Acceleration, Deceleration, and Constant Motion. J. Sports Sci. 2012, 30, 121–127. [Google Scholar] [CrossRef]
- Coutts, A.J.; Duffield, R. Validity and Reliability of GPS Devices for Measuring Movement Demands of Team Sports. J. Sci. Med. Sport 2010, 13, 133–135. [Google Scholar] [CrossRef]
- Johnston, R.J.; Watsford, M.L.; Kelly, S.J.; Pine, M.J.; Spurrs, R.W. Validity and Interunit Reliability of 10 Hz and 15 Hz GPS Units for Assessing Athlete Movement Demands. J. Strength Cond. Res. 2014, 28, 1649–1655. [Google Scholar] [CrossRef]
- Johnston, R.J.; Watsford, M.L.; Pine, M.J.; Spurrs, R.W.; Sporri, D. Assessment of 5 Hz and 10 Hz GPS Units for Measuring Athlete Movement Demands. Int. J. Perform. Anal. Sport 2013, 13, 262–274. [Google Scholar] [CrossRef]
- Frencken, W.; Lemmink, K.; Delleman, N.; Visscher, C. Oscillations of Centroid Position and Surface Area of Soccer Teams in Small-Sided Games. Eur. J. Sport Sci. 2011, 11, 215–223. [Google Scholar] [CrossRef]
- Cummins, C.; Orr, R.; O’Connor, H.; West, C. Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review. Sports Med. 2013, 43, 1025–1042. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. Int. J. Sports Physiol. Perform. 2017, 12, S218–S226. [Google Scholar] [CrossRef]
- Chen, K.Y.; Bassett, D.R. The Technology of Accelerometry-Based Activity Monitors: Current and Future. Med. Sci. Sports Exerc. 2005, 37, S490–S500. [Google Scholar] [CrossRef]
- Sato, K.; Smith, S.L.; Sands, W.A. Validation of an Accelerometer for Measuring Sport Performance. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2009, 23, 341–347. [Google Scholar] [CrossRef]
- Boyd, L.J.; Ball, K.; Aughey, R.J. Quantifying External Load in Australian Football Matches and Training Using Accelerometers. Int. J. Sports Physiol. Perform. 2013, 8, 44–51. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S.J.; Pino-Ortega, J. Accelerometry as a Method for External Workload Monitoring in Invasion Team Sports. A Systematic Review. PLoS ONE 2020, 15, e0236643. [Google Scholar] [CrossRef]
- Hendricks, S.; Karpul, D.; Lambert, M. Momentum and Kinetic Energy before the Tackle in Rugby Union. J. Sports Sci. Med. 2014, 13, 557. [Google Scholar]
- Hendricks, S.; Lambert, M. Tackling in Rugby: Coaching Strategies for Effective Technique and Injury Prevention. Int. J. Sports Sci. Coach. 2010, 5, 117–135. [Google Scholar] [CrossRef]
- Whitehead, S.; Dalton Barron, N.; Rennie, G.; Jones, B. The Peak Locomotor Characteristics of Super League (Rugby League) Match-Play. Int. J. Perform. Anal. Sport 2021, 21, 981–992. [Google Scholar] [CrossRef]
- Wundersitz, D.W.T.; Gastin, P.B.; Robertson, S.J.; Netto, K.J. Validity of a Trunk-Mounted Accelerometer to Measure Physical Collisions in Contact Sports. Int. J. Sports Physiol. Perform. 2015, 10, 681–686. [Google Scholar] [CrossRef]
- Couceiro, M.S.; Dias, G.; Mendes, R.; Araújo, D. Accuracy of Pattern Detection Methods in the Performance of Golf Putting. J. Mot. Behav. 2013, 45, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Valdés, B.; Jones, B.; Hendricks, S.; Weaving, D.; Ramirez-Lopez, C.; Whitehead, S.; González, J.; Gisbert-Orozco, J.; Trabucchi, M.; Moras, G. A Novel Application of Entropy Analysis for Assessing Changes in Movement Variability during Cumulative Tackles in Young Elite Rugby League Players. Biol. Sport 2023, 40, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Davids, K.; Glazier, P.; Araújo, D.; Bartlett, R. Movement Systems as Dynamical Systems: The Functional Role of Variability and Its Implications for Sports Medicine. Sports Med. 2003, 33, 245–260. [Google Scholar] [CrossRef]
- Stergiou, N.; Harbourne, R.T.; Cavanaugh, J.T. Optimal Movement Variability: A New Theoretical Perspective for Neurologic Physical Therapy. J. Neurol. Phys. Ther. 2006, 30, 120–129. [Google Scholar] [CrossRef]
- Cortes, N.; Onate, J.; Morrison, S. Differential Effects of Fatigue on Movement Variability. Gait Posture 2014, 39, 888–893. [Google Scholar] [CrossRef]
- Murray, A.M.; Ryu, J.H.; Sproule, J.; Turner, A.P.; Graham-Smith, P.; Cardinale, M. A Pilot Study Using Entropy as a Non-Invasive Assessment of Running. Int. J. Sports Physiol. Perform. 2017, 13, 339–346. [Google Scholar] [CrossRef]
- Sampaio, J.; Maças, V. Measuring Tactical Behaviour in Football. Int. J. Sports Med. 2012, 33, 395–401. [Google Scholar] [CrossRef]
- Moras, G.; Fernández-Valdés, B.; Vázquez-Guerrero, J.; Tous-Fajardo, J.; Exel, J.; Sampaio, J. Entropy Measures Detect Increased Movement Variability in Resistance Training When Elite Rugby Players Use the Ball. J. Sci. Med. Sport 2018, 21, 1286–1292. [Google Scholar] [CrossRef]
- Fernández-Valdés, B.; Sampaio, J.; Exel, J.; González, J.; Tous-Fajardo, J.; Jones, B.; Moras, G. The Influence of Functional Flywheel Resistance Training on Movement Variability and Movement Velocity in Elite Rugby Players. Front. Psychol. 2020, 11, 1205. [Google Scholar] [CrossRef] [PubMed]
- Viñas, S.T.; Villa, B.F.-V.; Buxadé, C.P.-C.; González, J.; Feliu, G.M. Decision Making Influences Movement Variability and Performance of High-Level Female Football Players in an Elastic Resistance Task. Front. Psychol. 2023, 14, 1175248. [Google Scholar]
- Pincus, S.M. Approximate Entropy as a Measure of System Complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample Entropy Analysis of Neonatal Heart Rate Variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef]
- Raffalt, P.C.; McCamley, J.; Denton, W.; Yentes, J.M. Sampling Frequency Influences Sample Entropy of Kinematics during Walking. Med. Biol. Eng. Comput. 2019, 57, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Raffalt, P.C.; Yentes, J.M.; Freitas, S.R.; Vaz, J.R. Calculating Sample Entropy from Isometric Torque Signals: Methodological Considerations and Recommendations. Front. Physiol. 2023, 14, 1173702. [Google Scholar] [CrossRef]
- Marmelat, V.; Duncan, A.; Meltz, S. Effect of Sampling Frequency on Fractal Fluctuations during Treadmill Walking. PLoS ONE 2019, 14, e0218908. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.; White, S.; Humphreys, S.; Robergs, R.; O’Dwyer, N. Caution Using Data from Triaxial Accelerometers Housed in Player Tracking Units during Running. J. Sports Sci. 2019, 37, 810–818. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Yentes, J.; Raffalt, P. Entropy Analysis in Gait Research: Methodological Considerations and Recommendations. Ann. Biomed. Eng. 2021, 49, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W. Spreadsheets for Analysis of Validity and Reliability. Sportscience 2017, 21, 36. [Google Scholar]
- Fallahtafti, F.; Wurdeman, S.R.; Yentes, J.M. Sampling Rate Influences the Regularity Analysis of Temporal Domain Measures of Walking More than Spatial Domain Measures. Gait Posture 2021, 88, 216–220. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale Entropy Analysis of Biological Signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 021906. [Google Scholar] [CrossRef]
- Zhang, X.D. Entropy for the Complexity of Physiological Signal Dynamics. In Healthcare and Big Data Management. Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; pp. 39–53. [Google Scholar]
- Hamill, J.; Caldwell, G.E.; Derrick, T.R. Reconstructing Digital Signals Using Shannon’s Sampling Theorem. J. Appl. Biomech. 1997, 13, 226–238. [Google Scholar] [CrossRef]
- Lin, J.; Brown, J.K.; Walsh, E.G. Soleus Muscle Length, Stretch Reflex Excitability, and the Contractile Properties of Muscle in Children and Adults: A Study of the Functional Joint Angle. Dev. Med. Child. Neurol. 1997, 39, 469–480. [Google Scholar] [CrossRef]
- Johnston, R.J.; Watsford, M.L.; Pine, M.J.; Spurrs, R.W.; Murphy, A.J.; Pruyn, E.C. The Validity and Reliability of 5-Hz Global Positioning System Units to Measure Team Sport Movement Demands. J. Strength Cond. Res. 2012, 26, 758–765. [Google Scholar] [CrossRef]
Parameter | Accelerometer 1000 Hz | Accelerometer 100 Hz | Bias (90% CI) | SEE (90% CI) | r (90% CI) |
---|---|---|---|---|---|
Mean acceleration (g) | 1.44 ± 0.10 | 1.00 ± 0.10 * | 0.85 (0.78–0.92) moderate | 0.62 (0.54–0.71) large | 0.85 (0.82–0.88) very large |
SampEn (a.u.) | 0.08 ± 0.02 | 0.56 ± 0.13 * | 6.42 (5.93–7.00) large | 1.00 (0.85–1.19) large | 0.71 (0.64–0.76) very large |
ApEn (a.u.) | 0.15 ± 0.03 | 0.67 ± 0.09 * | 2.91 (2.69–3.17) large | 1.65 (1.34–2.11) large | 0.52 (0.43–0.60) very large |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Valdés, B.; Jones, B.; Hendricks, S.; Weaving, D.; Ramirez-Lopez, C.; Whitehead, S.; Toro-Román, V.; Trabucchi, M.; Moras, G. Comparison of Mean Values and Entropy in Accelerometry Time Series from Two Microtechnology Sensors Recorded at 100 vs. 1000 Hz During Cumulative Tackles in Young Elite Rugby League Players. Sensors 2024, 24, 7910. https://doi.org/10.3390/s24247910
Fernández-Valdés B, Jones B, Hendricks S, Weaving D, Ramirez-Lopez C, Whitehead S, Toro-Román V, Trabucchi M, Moras G. Comparison of Mean Values and Entropy in Accelerometry Time Series from Two Microtechnology Sensors Recorded at 100 vs. 1000 Hz During Cumulative Tackles in Young Elite Rugby League Players. Sensors. 2024; 24(24):7910. https://doi.org/10.3390/s24247910
Chicago/Turabian StyleFernández-Valdés, Bruno, Ben Jones, Sharief Hendricks, Dan Weaving, Carlos Ramirez-Lopez, Sarah Whitehead, Víctor Toro-Román, Michela Trabucchi, and Gerard Moras. 2024. "Comparison of Mean Values and Entropy in Accelerometry Time Series from Two Microtechnology Sensors Recorded at 100 vs. 1000 Hz During Cumulative Tackles in Young Elite Rugby League Players" Sensors 24, no. 24: 7910. https://doi.org/10.3390/s24247910
APA StyleFernández-Valdés, B., Jones, B., Hendricks, S., Weaving, D., Ramirez-Lopez, C., Whitehead, S., Toro-Román, V., Trabucchi, M., & Moras, G. (2024). Comparison of Mean Values and Entropy in Accelerometry Time Series from Two Microtechnology Sensors Recorded at 100 vs. 1000 Hz During Cumulative Tackles in Young Elite Rugby League Players. Sensors, 24(24), 7910. https://doi.org/10.3390/s24247910