Post-Processing Kalman Filter Application for Improving Cooperative Awareness Messages’ Position Data Accuracy
Abstract
:1. Introduction
- Time intervals between the CAMs are mostly non-equidistant, as they change with the change in the dynamic state of the V2X vehicle. This can lead to divergence of the filter, as the Process Noise Covariance Matrix ( matrix) is not correct when the time step between the data changes [19].
2. Materials and Methods
2.1. Methodological Approach
2.2. Experimental Set-Up and Design
3. Modeling of Kalman Filters
3.1. Theoretical Background and Implementation of Extended Kalman Filter
3.2. Extended Kalman Filter Including Sideslip Angle
3.3. Unscented Kalman Filter
4. Results
4.1. Application Analysis of Kalman Filters and Kinematic Model
4.2. Iterative Matrix Adjustment
4.3. Equidistantiation with Linear Interpolation Points
4.4. Results Summary of the Best Approaches
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauder, M.; Paula, D.; Böhm, K.; Kubjatko, T.; Wech, L.; Schweiger, H.-G. Opportunities and challenges of cooperative intelligent transportation systems on accident analysis. In Proceedings of the 30th Annual Congress of the EVU, Strasbourg, France, 26–28 October 2022; EVU: Berlin, Germany, 2022; pp. 1–12, ISBN 978-80-554-1962-6. [Google Scholar]
- Festag, A. Cooperative intelligent transport systems standards in europe. IEEE Commun. Mag. 2014, 52, 166–172. [Google Scholar] [CrossRef]
- Dynniq Mobility Global. Volkswagen Chooses ITS-G5 in New Golf—Dynniq Mobility Global. Available online: https://www.dynniqmobility.com/volkswagen-chooses-its-g5-in-new-golf/ (accessed on 11 May 2021).
- About C-ITS. Available online: https://www.car-2-car.org/about-c-its/ (accessed on 9 December 2021).
- ETSI EN 302 637-2-V1.4.1; Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service. ETSI: Sophia-Antipolis, France, 2019.
- ETSI EN 302 637-3-V1.3.1; Intelligent Transport Systems (ITS); ETSI: Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service. ETSI: Sophia-Antipolis, France, 2019.
- UNECE. UN Regulation No. 160 Revision 1: Uniform Provisions Concerning the Approval of Motor Vehicles with Regard to the Event Data Recorder, 2023. (E/ECE/TRANS/505/Rev.3/Add.159/Rev.1). Available online: https://unece.org/transport/documents/2023/01/standards/un-regulation-no160-revision-1-event-data-recorder-edr-01 (accessed on 5 December 2023).
- Bauder, M.; Festag, A.; Kubjatko, T.; Schweiger, H.-G. Data Accuracy in Vehicle-to-X Cooperative Awareness Messages: An Experimental Study for the First Commercial Deployment of C-ITS in Europe. Veh. Commun. 2024, 47, 100744. [Google Scholar] [CrossRef]
- ETSI TS 101 539-2-V1.1.1; Intelligent Transport Systems (ITS); V2X Applications; Part 2: Intersection Collision Risk Warning (ICRW) Application Requirements Specification. ETSI: Sophia-Antipolis, France, 2018.
- ETSI TS 101 539-3-V1.1.1; Intelligent Transport Systems (ITS); V2X Applications; Part 3: Longitudinal Collision Risk Warning (LCRW) Application Requirements Specification. ETSI: Sophia-Antipolis, France, 2013.
- Wang, B.; Sun, Z.; Jiang, X.; Zeng, J.; Liu, R. Kalman Filter and Its Application in Data Assimilation. Atmosphere 2023, 14, 1319. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Maihami, V. A Review on Kalman Filter Models. Arch. Computat. Methods Eng. 2023, 30, 727–747. [Google Scholar] [CrossRef]
- Deep, A.; Mittal, M.; Mittal, V. Application of Kalman Filter in GPS Position Estimation. In Proceedings of the 8th IEEE Power India International Conference, PIICON 2018, Kurukshetra, India, 10–12 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5, ISBN 978-1-5386-7339-3. [Google Scholar]
- Ashok Kumar, N.; Suresh, C.; Sasibhushana Rao, G. Extended Kalman Filter for GPS Receiver Position Estimation. In Intelligent Engineering Informatics; Bhateja, V., Coello Coello, C.A., Satapathy, S.C., Pattnaik, P.K., Eds.; Springer: Singapore, 2018; pp. 481–488. ISBN 978-981-10-7565-0. [Google Scholar]
- Shi, E. An improved real-time adaptive Kalman filter for low-cost integrated GPS/INS navigation. In Proceedings of the 2012 International Conference on Measurement, Information and Control (MIC 2012), Harbin, China, 18–20 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1093–1098, ISBN 978-1-4577-1604-1. [Google Scholar]
- Chunhakam, P.; Pummarin, P.; Jeen-im, P.; Wardkien, P.; Wisartpong, P.; Lertteerada, K. GPS Positon Predicting System by Kalman Filter with Velocity from OBD and Direction from Magnetometer. In Proceedings of the 2021 9th International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 10–12 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 444–447, ISBN 978-1-7281-9584-1. [Google Scholar]
- El Maliki, A.; Benlafkih, A.; Anoune, K.; Hadjoudja, A. Enhancement of an Electric Vehicle’s State of Charge Estimation Using an Extended Kalman Filter. In Automatic Control and Emerging Technologies; El Fadil, H., Zhang, W., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 50–58. ISBN 978-981-97-0125-4. [Google Scholar]
- Lagraoui, M.; Nejmi, A. Estimation of Lithium-Ion Battery State-of-Charge Using an Unscented Kalman Filter. In Automatic Control and Emerging Technologies; El Fadil, H., Zhang, W., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 678–689. ISBN 978-981-97-0125-4. [Google Scholar]
- Shingote, S.; Shejwalkar, A.; Swain, S. Comparative Analysis for State-of-Charge Estimation of Lithium-Ion Batteries using Non-Linear Kalman Filters. In Proceedings of the 2023 IEEE 3rd International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Bhubaneswar, India, 9–12 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6, ISBN 979-8-3503-1997-2. [Google Scholar]
- Vignarca, D.; Waitz, M.; Arrigoni, S.; Sabbioni, E. Vehicle Localization Technique for Traffic Light Advisor Application. In Advances in Dynamics of Vehicles on Roads and Tracks III; Huang, W., Ahmadian, M., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 366–379. ISBN 978-3-031-66967-5. [Google Scholar]
- Qi, D.; Feng, J.; Ni, X.; Wang, L. Maximum Correntropy Extended Kalman Filter for Vehicle State Observation. Int. J. Automot. Technol. 2023, 24, 377–388. [Google Scholar] [CrossRef]
- Singh, M.; Lakra, S.; Das, S.; Mishra, S.K.; Sahoo, A.K.; Acharya, B. Extended Kalman Filter-Based Position Estimation in Autonomous Vehicle Applications. In Microelectronics, Communication Systems, Machine Learning and Internet of Things; Nath, V., Mandal, J.K., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 427–440. ISBN 978-981-19-1905-3. [Google Scholar]
- Xiao, G.; Song, X.; Cao, H.; Zhao, S.; Dai, H.; Li, M. Augmented extended Kalman filter with cooperative Bayesian filtering and multi-models fusion for precise vehicle localisations. IET Radar Sonar Navig. 2020, 14, 1815–1826. [Google Scholar] [CrossRef]
- Amanullah, M.A.; Loke, S.W.; Baruwal Chhetri, M.; Doss, R. A Taxonomy and Analysis of Misbehaviour Detection in Cooperative Intelligent Transport Systems: A Systematic Review. ACM Comput. Surv. 2024, 56, 1–38. [Google Scholar] [CrossRef]
- Kamel, J.; Jemaa, I.B.; Kaiser, A.; Cantat, L.; Urien, P. Misbehavior Detection in C-ITS: A comparative approach of local detection mechanisms. In Proceedings of the 2019 IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, USA, 4–6 December 2019; Cabric, D., Ed.; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8, ISBN 978-1-7281-4571-6. [Google Scholar]
- Yaduwanshi, R.; Kumar, S. Location Accuracy and Prediction in VANETs Using Kalman Filter. In Emerging Technologies in Data Mining and Information Security; Dutta, P., Bhattacharya, A., Dutta, S., Lai, W.-C., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 565–575. ISBN 978-981-19-4675-2. [Google Scholar]
- Randriamasy, M.; Cabani, A.; Chafouk, H.; Fremont, G. Reliable vehicle location in electronic toll collection service with cooperative intelligent transportation systems. In Engaged Citizens and Their New Smart Worlds, Proceedings of the IEEE PIMRC’17: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, USA, 8–13 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7. ISBN 978-1-5386-3529-2. [Google Scholar]
- Randriamasy, M.; Cabanil, A.; Chafouk, H.; Fremont, G. Evaluation of methods to estimate vehicle location in Electronic Toll Collection Service with C-ITS. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 748–753, ISBN 978-1-5386-4452-2. [Google Scholar]
- Bauder, M.; Kubjatko, T.; Schweiger, H.-G. Cooperative Awareness Messages’ Generation Frequencies, Trigger Distributions and Pseudonym Changes of First Commercially Deployed Vehicles in Real Operating Scenarios. IEEE Access 2023, 11, 69708–69719. [Google Scholar] [CrossRef]
- Morales, E.S.; Dauth, J.; Huber, B.; García Higuera, A.; Botsch, M. High Precision Outdoor and Indoor Reference State Estimation for Testing Autonomous Vehicles. Sensors 2021, 21, 1131. [Google Scholar] [CrossRef] [PubMed]
- ADMA-G: Pro+/ Eco+/ Eco für Automotive/ Bahn | GeneSys Elektronik GmbH. Available online: https://genesys-offenburg.de/adma-g/ (accessed on 23 May 2022).
- Commsignia. Powerful V2X Onboard Unit » Commsignia. Available online: https://www.commsignia.com/products/obu/ (accessed on 23 May 2022).
- Kim, Y.V. (Ed.) Kalman Filter: Engineering Applications; IntechOpen: Rijeka, Croatia, 2023; ISBN 978-1-80356-577-4. [Google Scholar]
- Marchthaler, R.; Dingler, S. Kalman-Filter: Einführung in die Zustandsschätzung und ihre Anwendung für Eingebettete Systeme; Springer Vieweg: Wiesbaden/Heidelberg, Germany, 2017; ISBN 978-3-658-16728-8. [Google Scholar]
- Martin Kompf. Distance Calculation. Available online: https://www.kompf.de/gps/distcalc.html (accessed on 28 November 2022).
- Motorblog. Das Extended Kalman Filter Einfach Erklärt. Available online: https://www.cbcity.de/das-extended-kalman-filter-einfach-erklaert (accessed on 11 January 2024).
- Bechtloff, J.P. Schätzung des Schwimmwinkels und Fahrdynamischer Parameter zur Verbesserung Modellbasierter Fahrdynamikregelungen. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2018. [Google Scholar]
- NumPy. Available online: https://numpy.org/ (accessed on 19 January 2024).
- Pandas—Python Data Analysis Library. Available online: https://pandas.pydata.org/ (accessed on 19 January 2024).
- FilterPy—FilterPy 1.4.4 Documentation. Available online: https://filterpy.readthedocs.io/en/latest/ (accessed on 9 January 2024).
Research Subject | Description |
---|---|
Kalman Filter | Application of Extended Kalman Filter and Unscented Kalman Filter |
Kinematic model | Application of CTRA and dynamic model with sideslip angle according to [30] -Analysis of CTRA model |
matrix adjustment | matric adjustment |
Linear interpolation points | ) |
Approach ↓/omega → | 0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|---|
median EKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
mw EKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SD EKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
median UKF CTRA | 33.5 | 41.7 | 65.7 | 27.5 | 7.80 | 10.9 | 5.04 | 11.8 | 9.27 | 0.00 | 0.00 |
mw UKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SD UKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.64 | 3.65 | 3.69 |
median EKF CTRA | 62.6 | 92.9 | 82.1 | 55.5 | 52.8 | 49.7 | 48.9 | 49.4 | 31.1 | 31.1 | 31.1 |
mw EKF CTRA | 54.8 | 92.3 | 61.2 | 35.2 | 29.8 | 30.5 | 35.4 | 39.4 | 14.5 | 16.7 | 16.1 |
SD EKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
median UKF CTRA | 2.39 | 1.51 | 4.80 | 0.54 | 5.20 | 8.99 | 6.29 | 13.4 | 4.66 | 9.22 | 9.68 |
mw UKF CTRA | 6.42 | 18.1 | 21.4 | 15.7 | 34.8 | 39.5 | 35.8 | 29.9 | 36.0 | 29.8 | 31.8 |
SD UKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
median EKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
mw EKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SD EKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
median UKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
mw UKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SD UKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
median EKF CTRA | 85.5 | 77.3 | 54.0 | 59.0 | 46.8 | 50.5 | 55.7 | 57.0 | 53.5 | 68.2 | 71.9 |
mw EKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SD EKF CTRA | 4.29 | 7.50 | 6.60 | 6.53 | 6.66 | 6.64 | 6.15 | 5.22 | 93.9 | 11.1 | 11.4 |
median UKF CTRA | 6.43 | 35.0 | 36.3 | 32.3 | 42.3 | 25.2 | 45.3 | 34.0 | 53.7 | 11.3 | 11.2 |
mw UKF CTRA | 40.6 | 82.6 | 56.6 | 57.6 | 76.8 | 81.5 | 84.4 | 82.9 | 86.4 | 85.2 | 66.0 |
SD UKF CTRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SUM All | 297 | 449 | 389 | 290 | 303 | 303 | 323 | 323 | 384 | 266 | 253 |
SUM Median | 190 | 248 | 243 | 175 | 155 | 145 | 161 | 166 | 152 | 120 | 124 |
SUM Mean | 102 | 193 | 139 | 109 | 141 | 152 | 156 | 152 | 137 | 132 | 114 |
SUM EKF | 207 | 270 | 204 | 156 | 136 | 137 | 146 | 151 | 193 | 127 | 131 |
SUM UKF | 89.4 | 179 | 185 | 134 | 167 | 166 | 177 | 172 | 191 | 139 | 122 |
SUM dx | 33.5 | 41.7 | 65.7 | 27.5 | 7.85 | 10.9 | 5.04 | 11.8 | 9.91 | 3.65 | 3.69 |
SUM dy | 263 | 407 | 323 | 262 | 295 | 293 | 318 | 311 | 374 | 263 | 249 |
SUM Golf 8 | 160 | 246 | 235 | 135 | 130 | 140 | 131 | 144 | 96.2 | 90.5 | 92.4 |
SUM ID.3 | 137 | 202 | 153 | 155 | 173 | 164 | 191 | 179 | 287 | 176 | 161 |
Golf 8: | Median | Mean | SD | ID.3: | Median | Mean | SD |
---|---|---|---|---|---|---|---|
Reference: | |||||||
dx | |||||||
dy | |||||||
Section 3.1: Plane KF Application | |||||||
dx_UKF_CTRA | |||||||
dy_UKF_CTRA | |||||||
dx_EKF_CTRA | |||||||
dy_EKF_CTRA | |||||||
Section 3.2: Q-Matrix Adjustment | |||||||
dx_UKF_SSA | |||||||
dy_UKF_SSA | |||||||
Section 3.3: Equidistantiation | |||||||
dx_UKF_CTRA_0.01 | |||||||
dy_UKF_CTRA_0.01 |
Golf 8: | Median | Median | %Median | ID.3: | Median | Median | %Median |
---|---|---|---|---|---|---|---|
Section 3.1: Plane KF Application | |||||||
dx_UKF_CTRA | ▲0.13 m | ▲40.6% | ▼0.15 m | ▼6.38% | |||
dy_UKF_CTRA | ▲0.01 m | ▲1.32% | ▲0.09 m | ▲36.0% | |||
dx_EKF_CTRA | ▼0.18 m | ▼56.3% | ▼0.34 m | ▼14.5% | |||
dy_EKF_CTRA | ▲0.71 m | ▲93.4% | ▲0.19 m | ▲76.0% | |||
Section 3.2: Q-Matrix Adjustment | |||||||
dx_UKF_SSA | ▲0.26 m | ▲81.3% | ▲0.54 m | ▲23.0% | |||
dy_UKF_SSA | ▲0.05 m | ▲6.58% | ▲0.18 m | ▲72.0% | |||
Section 3.3: Equidistantiation | |||||||
dx_UKF_CTRA_0.01 | ▼0.02 m | ▼6.25% | ▲0.30 m | ▲12.8% | |||
dy_UKF_CTRA_0.01 | ▲0.13 m | ▲17.1% | ▲0.08 m | ▲32.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauder, M.; Langer, R.; Kubjatko, T.; Schweiger, H.-G. Post-Processing Kalman Filter Application for Improving Cooperative Awareness Messages’ Position Data Accuracy. Sensors 2024, 24, 7892. https://doi.org/10.3390/s24247892
Bauder M, Langer R, Kubjatko T, Schweiger H-G. Post-Processing Kalman Filter Application for Improving Cooperative Awareness Messages’ Position Data Accuracy. Sensors. 2024; 24(24):7892. https://doi.org/10.3390/s24247892
Chicago/Turabian StyleBauder, Maximilian, Robin Langer, Tibor Kubjatko, and Hans-Georg Schweiger. 2024. "Post-Processing Kalman Filter Application for Improving Cooperative Awareness Messages’ Position Data Accuracy" Sensors 24, no. 24: 7892. https://doi.org/10.3390/s24247892
APA StyleBauder, M., Langer, R., Kubjatko, T., & Schweiger, H.-G. (2024). Post-Processing Kalman Filter Application for Improving Cooperative Awareness Messages’ Position Data Accuracy. Sensors, 24(24), 7892. https://doi.org/10.3390/s24247892