Phase-Change-Material-Based True Time-Delay System
Abstract
:1. Introduction
2. Background Concept
3. Delay-Line Architecture
3.1. Bragg Gratings
3.2. Cascade of Bragg Gratings
4. Numerical Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zmuda, H.; Soref, R.A.; Payson, P.; Johns, S.; Toughlin, E.N. Photonic Beamformer for Phased Array Antennas Using a Fiber Grating Prism. IEEE Photon. Technol. Lett. 1997, 9, 241–243. [Google Scholar] [CrossRef]
- Chen, M.Y.; Subbaraman, H.; Chen, R.T. Photonic Crystal Fiber Beamformer for Multiple X-band Phased Array Antenna Transmissions. IEEE Photon. Technol. Lett. 2008, 20, 375–377. [Google Scholar] [CrossRef]
- Nikfalazar, M.; Sazegar, M.; Mehmood, A.; Wiens, A.; Friederich, A.; Maune, H.; Binder, J.R.; Jakoby, R. Two-Dimensional Beam-Steering Phased-Array Antenna with Compact Tunable Phase Shifter Based on BST Thick Films. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 585–588. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Zhu, D.; Pan, S. An Optically Controlled Phased Array Antenna Based on Single Sideband Polarization Modulation. Opt. Express 2014, 22, 3761–3765. [Google Scholar] [CrossRef]
- Van Acoleyen, K.; Komoroska, K.; Bogaerts, W.; Baets, R. Integrated Optical Beam Steerers. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 17–21 March 2013. [Google Scholar] [CrossRef]
- Abdalrazak, M.Q.; Majeed, A.H.; Abd-Alhameed, R.A. A Critical Examination of the Beam-Squinting Effect in Broadband Mobile Communication: Review Paper. Electronics 2023, 12, 400. [Google Scholar] [CrossRef]
- Khurgin, J.B. Slow Light in Various Media: A Tutorial. Adv. Opt. Photon. 2010, 2, 287. [Google Scholar] [CrossRef]
- Tucker, R.S.; Ku, P.C.; Chang-Hasnain, C.J. Slow-Light Optical Buffers: Capabilities and Fundamental Limitations. J. Light. Technol. 2005, 23, 4046. [Google Scholar] [CrossRef]
- Wang, C.; Yao, J. Fiber Bragg Gratings for Microwave Photonics Subsystems. Opt. Express 2013, 21, 22868. [Google Scholar] [CrossRef] [PubMed]
- Sancho, J.; Chin, S.; Sagues, M.; Loayssa, A.; Lloret, J.; Gasulla, I.; Capmany, J. True Time Delay on Tunable Microwave Photonic Filter Based on Stimulated Brillouin Scattering in Fibers. In Proceedings of the 36th European Conference and Exhibition on Optical Communication, Torino, Italy, 19–23 September 2010. [Google Scholar] [CrossRef]
- Hyeon, M.G.; Kim, H.J.; Kim, B.M.; Eom, T.J. Spectral Domain Optical Coherence Tomography with Balanced Detection Using Single Line-Scan Camera and Optical Delay Line. Opt. Express 2015, 23, 23079. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, K.; Itoh, M.; Takahashi, H. Integrated-Optic Variable Delay Line and Its Application to a Low-Coherence Reflectometer. Opt. Lett. 2005, 30, 2739. [Google Scholar] [CrossRef] [PubMed]
- Aboketaf, A.A.; Elshaari, A.W.; Preble, S.F. Optical Time Division Multiplexer on Silicon Chip. Opt. Express 2010, 18, 13529–13535. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.Z.L.; Wang, X.W.X.; Lu, L.L.L.; Chen, J.C.J. Integrated Optical Delay Lines: A Review and Perspective [Invited]. Chin. Opt. Lett. 2018, 16, 101301. [Google Scholar] [CrossRef]
- Chung, C.-J.; Xu, X.; Wang, G.; Pan, Z.; Chen, R.T. On-Chip Optical True Time Delay Lines Featuring One-Dimensional Fishbone Photonic Crystal Waveguide. Appl. Phys. Lett. 2018, 112, 071104. [Google Scholar] [CrossRef]
- Kumari, S.; Prince, S. Photonic Integrated CMOS-Compatible True Time Delay Based Broadband Beamformer. Opt. Quantum Electron. 2023, 55, 13. [Google Scholar] [CrossRef]
- Soref, R.A.; De Leonardis, F.; Passaro, V.M.N. Integrated On-Chip Bragg Time-Delay System for Thermo-Optical Control of a Microwave Antenna. J. Light. Technol. 2018, 36, 5849–5856. [Google Scholar] [CrossRef]
- Song, C.; Gao, Y.; Wang, G.; Chen, Y.; Xu, P.; Gu, C.; Shi, Y.; Shen, X. Compact Nonvolatile 2 × 2 Photonic Switch Based on Two-Mode Interference. Opt. Express 2022, 30, 30430. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, Z.; Nong, J.; Li, H.; Du, T.; Ma, H.; Li, S.; Deng, Y.; Zhao, F.; Zhang, Z.; et al. Optimized Wideband and Compact Multifunctional Photonic Device Based on Sb2S3 Phase Change Material. Opt. Express 2024, 32, 8506. [Google Scholar] [CrossRef] [PubMed]
- Soref, R.A.; De Leonardis, F.; De Carlo, M.; Passaro, V.M.N. Compact Non-Volatile Multilevel Sb₂Se₃ Electro-Optical Switching in the Mid Infrared Group IV Photonics Platform. Opt. Laser Technol. 2024, 176, 111005. [Google Scholar] [CrossRef]
- Gallagher, D.F.G.; Felici, T.P. Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics: Pros and Cons. In Proceedings of the SPIE Integrated Optics: Devices, Materials, and Technologies VII, San Jose, CA, USA, 19 June 2003. [Google Scholar] [CrossRef]
- Lumerical Solutions, Inc. Available online: https://www.lumerical.com (accessed on 11 February 2024).
- Soref, R.A.; De Leonardis, F.; Passaro, V.M.N. Mach-Zehnder Crossbar Switching and Tunable Filtering Using N-Coupled Waveguide Bragg Resonators. Opt. Express 2018, 26, 14959. [Google Scholar] [CrossRef] [PubMed]
Steering Angle (Degree) | di,NL (µm) BG/CSPBGR |
---|---|
8 | 370.6 |
16 | 756.1 |
24 | 1200 |
32 | 1600 |
40 | 2200 |
48 | 2900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutteeri, R.; De Carlo, M.; De Leonardis, F.; Soref, R.A.; Passaro, V.M.N. Phase-Change-Material-Based True Time-Delay System. Sensors 2024, 24, 7613. https://doi.org/10.3390/s24237613
Kutteeri R, De Carlo M, De Leonardis F, Soref RA, Passaro VMN. Phase-Change-Material-Based True Time-Delay System. Sensors. 2024; 24(23):7613. https://doi.org/10.3390/s24237613
Chicago/Turabian StyleKutteeri, Rahuldas, Martino De Carlo, Francesco De Leonardis, Richard A. Soref, and Vittorio M. N. Passaro. 2024. "Phase-Change-Material-Based True Time-Delay System" Sensors 24, no. 23: 7613. https://doi.org/10.3390/s24237613
APA StyleKutteeri, R., De Carlo, M., De Leonardis, F., Soref, R. A., & Passaro, V. M. N. (2024). Phase-Change-Material-Based True Time-Delay System. Sensors, 24(23), 7613. https://doi.org/10.3390/s24237613