THz Polarimetric Imaging of Carbon Fiber-Reinforced Composites Using the Portable Handled Spectral Reflection (PHASR) Scanner
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Polarization-Sensitive Point Measurements
3.2. Polarization-Sensitive Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandyopadhyay, A.; Sengupta, A. A Review of the Concept, Applications and Implementation Issues of Terahertz Spectral Imaging Technique. IETE Tech. Rev. 2022, 39, 471–489. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12, 1687814020913761. [Google Scholar] [CrossRef]
- Dong, J.; Kim, B.; Locquet, A.; McKeon, P.; Declercq, N.; Citrin, D.S. Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos. Part B Eng. 2015, 79, 667–675. [Google Scholar] [CrossRef]
- Saeedkia, D. Handbook of Terahertz Technology for Imaging, Sensing and Communications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Brinkmann, S.; Vieweg, N.; Gärtner, G.; Plew, P.; Deninger, A. Towards Quality Control in Pharmaceutical Packaging: Screening Folded Boxes for Package Inserts. J. Infrared Millim. Terahertz Waves 2017, 38, 339–346. [Google Scholar] [CrossRef]
- Bauer, M.; Hussung, R.; Matheis, C.; Reichert, H.; Weichenberger, P.; Beck, J.; Matuschczyk, U.; Jonuscheit, J.; Friederich, F. Fast FMCW Terahertz Imaging for In-Process Defect Detection in Press Sleeves for the Paper Industry and Image Evaluation with a Machine Learning Approach. Sensors 2021, 21, 6569. [Google Scholar] [CrossRef]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial Applications of Terahertz Sensing: State of Play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef]
- Ellrich, F.; Bauer, M.; Schreiner, N.; Keil, A.; Pfeiffer, T.; Klier, J.; Weber, S.; Jonuscheit, J.; Friederich, F.; Molter, D. Terahertz Quality Inspection for Automotive and Aviation Industries. J. Infrared Millim. Terahertz Waves 2020, 41, 470–489. [Google Scholar] [CrossRef]
- Tao, Y.H.; Fitzgerald, A.J.; Wallace, V.P. Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology. Sensors 2020, 20, 712. [Google Scholar] [CrossRef]
- Nsengiyumva, W.; Zhong, S.; Zheng, L.; Liang, W.; Wang, B.; Huang, Y.; Chen, X.; Shen, Y. Sensing and Nondestructive Testing Applications of Terahertz Spectroscopy and Imaging Systems: State-of-the-Art and State-of-the-Practice. IEEE Trans. Instrum. Meas. 2023, 72, 1–83. [Google Scholar] [CrossRef]
- Zhang, D.-D.; Ren, J.-J.; Gu, J.; Li, L.-J.; Zhang, J.-Y.; Xiong, W.-H.; Zhong, Y.-F.; Zhou, T.-Y. Nondestructive testing of bonding defects in multilayered ceramic matrix composites using THz time domain spectroscopy and imaging. Compos. Struct. 2020, 251, 112624. [Google Scholar] [CrossRef]
- Fosodeder, P.; Hubmer, S.; Ploier, A.; Ramlau, R.; van Frank, S.; Rankl, C. Phase-contrast THz-CT for non-destructive testing. Opt. Express 2021, 29, 15711–15723. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Zhang, H.; Robitaille, F.; Maldague, X. Terahertz time-domain spectroscopy for the inspection of dry fibre preforms. NDT E Int. 2024, 145, 103133. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Zhang, J.; Liu, H.; Wan, M. Non-Destructive Testing of a Fiber-Web-Reinforced Polymethacrylimide Foam Sandwich Panel with Terahertz Time-Domain Spectroscopy. Sensors 2024, 24, 1715. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Zhong, S.; Zhang, Q.; Huang, Y. Rapid diagnosis of corrosion beneath epoxy protective coating using non-contact THz-TDS technique. Nondestruct. Test. Eval. 2024, 39, 557–572. [Google Scholar] [CrossRef]
- Liu, Z.; Kong, X.; Cai, C.S.; Peng, H.; Zhang, J. Internal defect characterization of bridge cables based on Terahertz time-domain spectroscopy and deep learning. Eng. Struct. 2024, 314, 118313. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Q.; Guo, J.; Liu, W.; Xia, R.; Yu, J.; Wang, X. A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS. Compos. Struct. 2024, 343, 118272. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, T.; Wang, Z.; Cui, H.L. Three-Dimensional Terahertz Continuous Wave Imaging Radar for Nondestructive Testing. IEEE Access 2020, 8, 144259–144276. [Google Scholar] [CrossRef]
- Cristofani, E.; Friederich, F.; Wohnsiedler, S.; Matheis, C.; Jonuscheit, J.; Vandewal, M.; Beigang, R. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection. Opt. Eng. 2014, 53, 031211. [Google Scholar] [CrossRef]
- Liang, B.; Wang, T.; Shen, S.; Hao, C.; Liu, D.; Liu, J.; Wang, K.; Yang, Z. Occlusion Removal in Terahertz Frequency-Modulated Continuous Wave Non-Destructive Testing Based on Inpainting. IEEE Trans. Terahertz Sci. Technol. 2024, 14, 699–707. [Google Scholar] [CrossRef]
- Moffa, C.; Merola, C.; Magboo, F.J.P.; Chiadroni, E.; Giuliani, L.; Curcio, A.; Palumbo, L.; Felici, A.C.; Petrarca, M. Pigments, minerals, and copper-corrosion products: Terahertz continuous wave (THz-CW) spectroscopic characterization of antlerite and atacamite. J. Cult. Herit. 2024, 66, 483–490. [Google Scholar] [CrossRef]
- Moffa, C.; Curcio, A.; Merola, C.; Migliorati, M.; Palumbo, L.; Felici, A.C.; Petrarca, M. Discrimination of natural and synthetic forms of azurite: An innovative approach based on high-resolution terahertz continuous wave (THz-CW) spectroscopy for Cultural Heritage. Dye. Pigment. 2024, 229, 112287. [Google Scholar] [CrossRef]
- Wallace, V.P.; MacPherson, E.; Zeitler, J.A.; Reid, C. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation. J. Opt. Soc. Am. A 2008, 25, 3120–3133. [Google Scholar] [CrossRef] [PubMed]
- Krimi, S.; Klier, J.; Ellrich, F.; Jonuscheit, J.; Urbansky, R.; Beigang, R.; von Freymann, G. An Evolutionary Algorithm Based Approach to Improve the Limits of Minimum Thickness Measurements of Multilayered Automotive Paints. In Proceedings of the 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015. [Google Scholar]
- Ospald, F.; Zouaghi, W.; Beigang, R.; Matheis, C.; Jonuscheit, J.; Recur, B.; Guillet, J.-P.; Mounaix, P.; Vleugels, W.; Bosom, P.; et al. Aeronautics composite material inspection with a terahertz time-domain spectroscopy system. Opt. Eng. 2013, 53, 031208. [Google Scholar] [CrossRef]
- Palka, N.; Panowicz, R.; Chalimoniuk, M.; Beigang, R. Non-destructive evaluation of puncture region in polyethylene composite by terahertz and X-ray radiation. Compos. Part B Eng. 2016, 92, 315–325. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; He, Y.; Li, W.; Wu, C. Terahertz Nondestructive Testing Method of Oil-paper Insulation Debonding and Foreign Matter Defects. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1901–1908. [Google Scholar] [CrossRef]
- Dong, J.; Bianca Jackson, J.; Melis, M.; Giovanacci, D.; Walker, G.C.; Locquet, A.; Bowen, J.W.; Citrin, D.S. Terahertz frequency-wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting. Opt. Express 2016, 24, 26972–26985. [Google Scholar] [CrossRef]
- Shi, H.; Calvelli, S.; Zhai, M.; Ricci, M.; Laureti, S.; Singh, P.; Fu, H.; Locquet, A.; Citrin, D.S. Terahertz Nondestructive Characterization of Conformal Coatings for Microelectronics Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2024, 14, 3–9. [Google Scholar] [CrossRef]
- Zhai, M.; Locquet, A.; Citrin, D.S. Terahertz nondestructive layer thickness measurement and delamination characterization of GFRP laminates. NDT E Int. 2024, 146, 103170. [Google Scholar] [CrossRef]
- Zhai, M.; Locquet, A.; Citrin, D.S. Pulsed THz imaging for thickness characterization of plastic sheets. NDT E Int. 2020, 116, 102338. [Google Scholar] [CrossRef]
- Dong, J.L.; Wu, X.L.; Locquet, A.; Citrin, D.S. Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 260–267. [Google Scholar] [CrossRef]
- Dong, J.; Locquet, A.; Citrin, D.S. Terahertz Quantitative Nondestructive Evaluation of Failure Modes in Polymer-Coated Steel. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Zhai, M.; Locquet, A.; Roquelet, C.; Ronqueti, L.A.; Citrin, D.S. Thickness characterization of multi-layer coated steel by terahertz time-of-flight tomography. NDT E Int. 2020, 116, 102358. [Google Scholar] [CrossRef]
- Harris, Z.B.; Arbab, M.H. Terahertz PHASR Scanner With 2 kHz, 100 ps Time-Domain Trace Acquisition Rate and an Extended Field-of-View Based on a Heliostat Design. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Khani, M.E.; Osman, O.B.; Harris, Z.B.; Chen, A.; Zhou, J.W.; Singer, A.J.; Arbab, M.H. Accurate and early prediction of the wound healing outcome of burn injuries using the wavelet Shannon entropy of terahertz time-domain waveforms. J. Biomed. Opt. 2022, 27, 116001. [Google Scholar] [CrossRef]
- Osman, O.B.; Harris, Z.B.; Khani, M.E.; Zhou, J.W.; Chen, A.; Singer, A.J.; Arbab, M.H. Deep neural network classification of in vivo burn injuries with different etiologies using terahertz time-domain spectral imaging. Biomed. Opt. Express 2022, 13, 1855–1868. [Google Scholar] [CrossRef]
- Khani, M.E.; Harris, Z.B.; Osman, O.B.; Singer, A.J.; Arbab, M.H. Triage of in vivo burn injuries and prediction of wound healing outcome using neural networks and modeling of the terahertz permittivity based on the double Debye dielectric parameters. Biomed. Opt. Express 2023, 14, 918–931. [Google Scholar] [CrossRef]
- Chen, A.; Harris, Z.B.; Virk, A.; Abazari, A.; Varadaraj, K.; Honkanen, R.; Arbab, M.H. Assessing Corneal Endothelial Damage Using Terahertz Time-Domain Spectroscopy and Support Vector Machines. Sensors 2022, 22, 9071. [Google Scholar] [CrossRef]
- Virk, A.S.; Harris, Z.B.; Arbab, M.H. Development of a terahertz time-domain scanner for topographic imaging of spherical targets. Opt. Lett. 2021, 46, 1065–1068. [Google Scholar] [CrossRef]
- Xu, K.; Harris, Z.B.; Arbab, M.H. Polarimetric imaging of back-scattered terahertz speckle fields using a portable scanner. Opt. Express 2023, 31, 11308–11319. [Google Scholar] [CrossRef]
- Khani, M.E.; Harris, Z.B.; Liu, M.; Arbab, M.H. Multiresolution spectrally-encoded terahertz reflection imaging through a highly diffusive cloak. Opt. Express 2022, 30, 31550–31566. [Google Scholar] [CrossRef]
- Wan, M.; Yuan, H.; Healy, J.J.; Sheridan, J.T. Terahertz confocal imaging: Polarization and sectioning characteristics. Opt. Lasers Eng. 2020, 134, 106182. [Google Scholar] [CrossRef]
- Okano, M.; Watanabe, S. Internal Status of Visibly Opaque Black Rubbers Investigated by Terahertz Polarization Spectroscopy: Fundamentals and Applications. Polymers 2018, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; McKinney, J.A.; George, D.K.; Niessen, K.A.; Sharma, A.; Markelz, A.G. Near-Field Stationary Sample Terahertz Spectroscopic Polarimetry for Biomolecular Structural Dynamics Determination. ACS Photonics 2021, 8, 658–668. [Google Scholar] [CrossRef]
- Chen, X.; Pickwell-MacPherson, E. An introduction to terahertz time-domain spectroscopic ellipsometry. APL Photonics 2022, 7, 071101. [Google Scholar] [CrossRef]
- Hayut, I.; Ben Ishai, P.; Agranat, A.J.; Feldman, Y. Circular polarization induced by the three-dimensional chiral structure of human sweat ducts. Phys. Rev. E 2014, 89, 042715. [Google Scholar] [CrossRef]
- Choi, W.J.; Cheng, G.; Huang, Z.; Zhang, S.; Norris, T.B.; Kotov, N.A. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 2019, 18, 820–826. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Huai, B.; Wang, S.; Zhang, Y.; Wang, D.; Rong, L.; Zheng, Y. Continuous-Wave THz Imaging for Biomedical Samples. Appl. Sci. 2021, 11, 71. [Google Scholar] [CrossRef]
- Naftaly, M. Terahertz Metrology; Artech House: London, UK, 2015. [Google Scholar]
- Xu, K.; Liu, M.; Arbab, M.H. Broadband terahertz time-domain polarimetry based on air plasma filament emissions and spinning electro-optic sampling in GaP. Appl. Phys. Lett. 2022, 120, 181107. [Google Scholar] [CrossRef]
- Harris, Z.B.; Xu, K.; Arbab, M.H. A handheld polarimetric imaging device and calibration technique for accurate mapping of terahertz Stokes vectors. Sci. Rep. 2024, 14, 17714. [Google Scholar] [CrossRef]
- Karpowicz, N.; Dawes, D.; Perry, M.J.; Zhang, X.-C. Fire damage on carbon fiber materials characterized by THz waves. Proc. SPIE 2006, 6212, 62120G. [Google Scholar]
- Howell, P.A. Nondestructive Evaluation (NDE) Methods and Capabilities Handbook; TM−2020-220568; Langley Research Center, NASA: Hampton, VA, USA, 2020. [Google Scholar]
- Ibrahim, M.E. Nondestructive evaluation of thick-section composites and sandwich structures: A review. Compos. Part A Appl. Sci. Manuf. 2014, 64, 36–48. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, K.; Zhu, S.; Xu, H.; Cao, D.; Zhao, L.; Zhang, R.; Yin, W. Review on the Electrical Resistance/Conductivity of Carbon Fiber Reinforced Polymer. Appl. Sci. 2019, 9, 2390. [Google Scholar] [CrossRef]
- Angulo, L.M.D.; Francisco, P.G.d.; Gallardo, B.P.; Martinez, D.P.; Cabello, M.R.; Bocanegra, D.E.; Garcia, S.G. Modeling and Measuring the Shielding Effectiveness of Carbon Fiber Composites. IEEE J. Multiscale Multiphysics Comput. Tech. 2019, 4, 207–213. [Google Scholar] [CrossRef]
- Im, K.-H.; Hsu, D.K.; Chiou, C.-P.T.; Barnard, D.J.; Kim, S.-K.; Kang, S.-J.; Cho, Y.T.; Jung, J.-A.; Yang, I.Y. Influence of Terahertz Waves on Unidirectional Carbon Fibers in CFRP Composite Materials. Mater. Sci. 2014, 20, 457–463. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Ma, Y.; Han, X.; Li, W.; Chang, T.; Wei, D.; Du, C.; Cui, H.-L. Spectroscopic study of terahertz reflection and transmission properties of carbon-fiber-reinforced plastic composites. Opt. Eng. 2015, 54, 054106. [Google Scholar] [CrossRef]
- Sørgård, T.; van Rheenen, A.; Haakestad, M. Terahertz imaging of composite materials in reflection and transmission mode with a time-domain spectroscopy system. Proc. SPIE 2016, 9747, 974714. [Google Scholar]
- Dong, J.; Pomarède, P.; Chehami, L.; Locquet, A.; Meraghni, F.; Declercq, N.F.; Citrin, D.S. Visualization of subsurface damage in woven carbon fiber-reinforced composites using polarization-sensitive terahertz imaging. NDT E Int. 2018, 99, 72–79. [Google Scholar] [CrossRef]
- Khani, M.E.; Arbab, M.H. Translation-Invariant Zero-Phase Wavelet Methods for Feature Extraction in Terahertz Time-Domain Spectroscopy. Sensors 2022, 22, 2305. [Google Scholar] [CrossRef]
- Arbab, M.H.; Winebrenner, D.; Thorsos, E.; Chen, A. Application of wavelet transforms in terahertz spectroscopy of rough surface targets. Proc. SPIE 2010, 7601, 760106. [Google Scholar]
- Arbab, M.H.; Chen, A.; Thorsos, E.; Winebrenner, D.; Zurk, L. Effect of surface scattering on terahertz time domain spectroscopy of chemicals. Proc. SPIE 2008, 6893, 68930C. [Google Scholar]
- Ruth, M.W.; Bryan, E.C.; Vincent, P.W.; Richard, J.P.; Donald, D.A.; Edmund, H.L.; Michael, P. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 2002, 47, 3853. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Harris, Z.B.; Vahey, P.; Arbab, M.H. THz Polarimetric Imaging of Carbon Fiber-Reinforced Composites Using the Portable Handled Spectral Reflection (PHASR) Scanner. Sensors 2024, 24, 7467. https://doi.org/10.3390/s24237467
Xu K, Harris ZB, Vahey P, Arbab MH. THz Polarimetric Imaging of Carbon Fiber-Reinforced Composites Using the Portable Handled Spectral Reflection (PHASR) Scanner. Sensors. 2024; 24(23):7467. https://doi.org/10.3390/s24237467
Chicago/Turabian StyleXu, Kuangyi, Zachery B. Harris, Paul Vahey, and M. Hassan Arbab. 2024. "THz Polarimetric Imaging of Carbon Fiber-Reinforced Composites Using the Portable Handled Spectral Reflection (PHASR) Scanner" Sensors 24, no. 23: 7467. https://doi.org/10.3390/s24237467
APA StyleXu, K., Harris, Z. B., Vahey, P., & Arbab, M. H. (2024). THz Polarimetric Imaging of Carbon Fiber-Reinforced Composites Using the Portable Handled Spectral Reflection (PHASR) Scanner. Sensors, 24(23), 7467. https://doi.org/10.3390/s24237467