Multi-Intelligent Reflecting Surfaces and Artificial Noise-Assisted Cell-Free Massive MIMO Against Simultaneous Jamming and Eavesdropping
Abstract
:1. Introduction
1.1. Motivations
1.2. Contributions
- We construct a joint framework for multi-IRS and AN-assisted cell-free massive MIMO downlink robust and secure communication, proposing a model to resist transient interference and eavesdropping.
- Determining the initial location information of legitimate users through IRS localization methods and determining the service AP set of users based on a large-scale fading AP selection strategy.
- The joint design of AP beamforming, AN matrix and IRS reflection phase shift to maximize the minimum achievable secrecy rate of the user under the constraint of satisfying the total power and IRS unit modulus.
- The numerical simulation experimental results demonstrate the effectiveness of the proposed multi-IRS joint AN scheme, which provides ideas for single-IRS to multi-IRS assisted physical layer security research.
1.3. Methods
1.4. Organizations
1.5. Notations
2. System Model
2.1. Channel Model
2.2. Maximum Large-Scale Fading-Based AP Selection Strategy
2.3. Downlink Transmission
3. Problem Formulation
4. Joint Precoding and an Design
4.1. Sub-Problem for When Given
4.1.1. Fix and , Solve for and
4.1.2. Fix , , Solve and
Algorithm 1: Alternating Optimization for Solving and |
Input: , , , and . |
Output: Beamforming , AN mattrix . |
1: Initialize , and , satisfy constraint , . |
2: repeat |
3: Given , according to formulation (26) and (27) get the optimal , . |
4: With given , , solving get the optimal and . |
5: Update . |
6: until the value of reaches convergence. |
4.2. Sub-Problem for When Given and
Algorithm 2: BCD-based algorithm for solving |
Input: Number of AP L, number of IRS I, number of N, number of antennas Q, , , and , , , . |
Output: Beamforming , AN mattrix , phase-shift matrix . |
1: Initialize phase-shift matrix , . |
2: repeat |
3: Solve each sub-problem: given , solve by applying Algorithm 1, get the solution , ; solve for given , and obtain the solution . |
4: Update . |
5: until the value of is below or . |
5. Numerical Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, N.P.; Ngo, H.Q.; Duong, T.Q.; Tuan, H.D. Full-Duplex Cyber-Weapon with Massive Arrays. IEEE Trans. Commun. 2017, 65, 5544–5558. [Google Scholar] [CrossRef]
- Mukherjee, A.; Fakoorian, S.A.A.; Huang, J.; Swindlehurst, A.L. Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 1550–1573. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, J.; Wang, X.; Hanzo, L. A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends. Proc. IEEE 2016, 104, 1727–1765. [Google Scholar] [CrossRef]
- Dong, L.; Han, Z.; Petropulu, A.P.; Poor, H.V. Improving Wireless Physical Layer Security via Cooperating Relays. IEEE Trans. Signal Process. 2010, 58, 1875–1888. [Google Scholar] [CrossRef]
- Wyner, A.D. The Wire-Tap Channel. Bell Syst. Tech. J. 1975, 54, 1335–1387. [Google Scholar] [CrossRef]
- Leung-Yan-Cheong, S.; Hellman, M. The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 1978, 24, 451–456. [Google Scholar] [CrossRef]
- Gopala, P.K.; Lai, L.; El Gamal, H. On the Secrecy Capacity of Fading Channels. IEEE Trans. Inf. Theory 2008, 54, 4687–4698. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.; Hong, D. Linear Precoding of Data and Artificial Noise in Secure Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2016, 15, 2245–2261. [Google Scholar]
- Xie, H.; Gao, F.; Zhang, S.; Jin, S. A Unified Transmission Strategy for TDD/FDD Massive MIMO Systems With Spatial Basis Expansion Model. IEEE Trans. Veh. Technol. 2017, 66, 3170–3184. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Process. Mag. 2013, 30, 440–460. [Google Scholar] [CrossRef]
- Zhu, J.; Schober, R.; Bhargava, V.K. Secure transmission in multi-cell massive MIMO systems. IEEE Trans. Wirel. Commun. 2014, 13, 4766–4781. [Google Scholar] [CrossRef]
- Di Pietro, R.; Oligeri, G. Jamming mitigation in cognitive radio networks. IEEE Netw. 2013, 27, 10–15. [Google Scholar] [CrossRef]
- Interdonato, G.; Björnson, E.; Quoc Ngo, H.; Frenger, P.; Larsson, E.G. Ubiquitous cell-free Massive MIMO communications. Wirel. Commun. Netw. 2019, 2019, 197. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Scalable Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2020, 68, 4247–4261. [Google Scholar] [CrossRef]
- Qiu, J.; Xu, K.; Xia, X.; Shen, Z.; Xie, W.; Zhang, D.; Wang, M. Secure Transmission Scheme Based on Fingerprint Positioning in Cell-Free Massive MIMO Systems. IEEE Trans. Signal Inf. Process. Netw. 2022, 8, 92–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, W.; Zheng, G.; Zhao, H.; Yang, L.; Zhu, H. Secure Transmission in Cell-Free Massive MIMO With Low-Resolution DACs Over Rician Fading Channels. IEEE Trans. Commun. 2022, 70, 2606–2621. [Google Scholar] [CrossRef]
- Xia, X.; Fan, Z.; Luo, W.; Lu, A.; Wang, D.; Zhao, X.; You, X. Joint Uplink Power Control, Downlink Beamforming, and Mode Selection for Secrecy Cell-Free Massive MIMO with Network-Assisted Full Duplexing. IEEE Syst. J. 2022, 17, 720–731. [Google Scholar] [CrossRef]
- Alageli, M.; Ikhlef, A.; Alsifiany, F.; Abdullah, M.A.; Chen, G.; Chambers, J. Optimal Downlink Transmission for Cell-Free SWIPT Massive MIMO Systems with Active Eavesdropping. Trans. Inf. Forensics Secur. 2020, 15, 1983–1998. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Zhang, G.; Guo, M. Security Performance Analysis of Cell-Free Massive MIMO over Spatially Correlated Rayleigh Fading Channels with Active Spoofing Attack. In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 21–23 October 2020. [Google Scholar]
- Zhang, X.; Guo, D.; An, K.; Zhang, B. Secure Communications Over Cell-Free Massive MIMO Networks with Hardware Impairments. IEEE Syst. J. 2020, 14, 1909–1920. [Google Scholar] [CrossRef]
- Hoang, T.M.; Ngo, H.Q.; Duong, T.Q.; Tuan, H.D.; Marshall, A. Cell-Free Massive MIMO Networks: Optimal Power Control Against Active Eavesdropping. IEEE Trans. Commun. 2018, 66, 4724–4737. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Mei, W.; Wang, D.; Chen, Z.; Zhang, R. Joint Beam Routing and Resource Allocation Optimization for Multi-IRS-Reflection Wireless Power Transfer. Trans. Wirel. Commun. 2024. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Nguyen, D.N.; Renzo, M.D.; Zhang, R. Leveraging Secondary Reflections and Mitigating Interference in Multi-IRS/RIS Aided Wireless Networks. IEEE Trans. Wirel. Commun. 2023, 22, 502–517. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Cui, S. Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser Communications: Framework, Algorithms, and Analysis. IEEE Trans. Wirel. Commun. 2020, 19, 6607–6620. [Google Scholar] [CrossRef]
- Zheng, B.; You, C.; Zhang, R. Intelligent Reflecting Surface Assisted Multi-User OFDMA: Channel Estimation and Training Design. IEEE Trans. Wirel. Commun. 2020, 19, 8315–8329. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface With Discrete Phase Shifts. IEEE Trans. Commun. 2020, 68, 1838–1851. [Google Scholar] [CrossRef]
- Huang, C.; Mo, R.; Yuen, C. Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2020, 38, 1839–1850. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, S.; Duan, L.; Zhang, R. Cooperative Double-IRS Aided Communication: Beamforming Design and Power Scaling. IEEE Wirel. Commun. Lett. 2020, 9, 1206–1210. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Xu, W.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces. IEEE Trans. Wirel. Commun. 2020, 19, 5218–5233. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Zhu, Y.; Zheng, G.; Wong, K.K.; Chatzinotas, S.; Yin, H.; Liu, P. RIS-Assisted Robust Hybrid Beamforming Against Simultaneous Jamming and Eavesdropping Attacks. IEEE Trans. Wirel. Commun. 2022, 21, 9212–9231. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Sun, Y.; Ng, D.W.K.; Schober, R. Robust and Secure Wireless Communications via Intelligent Reflecting Surfaces. IEEE J. Sel. Areas Commun. 2020, 38, 2637–2652. [Google Scholar] [CrossRef]
- Gong, S.; Lu, X.; Hoang, D.T.; Niyato, D.; Shu, L.; Kim, D.I.; Liang, Y.C. Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2020, 22, 2283–2314. [Google Scholar] [CrossRef]
- Almohamad, A.; Tahir, A.M.; Al-Kababji, A.; Furqan, H.M.; Khattab, T.; Hasna, M.O.; Arslan, H. Smart and Secure Wireless Communications via Reflecting Intelligent Surfaces: A Short Survey. IEEE Open J. Commun. Soc. 2020, 1, 1442–1456. [Google Scholar] [CrossRef]
- Hu, H.; Xu, K.; Xie, W.; Xia, X.; Wang, M. Multi-Intelligent Reflecting Surface Assisted Cell-free Massive MIMO Downlink Transmission. In Proceedings of the IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021. [Google Scholar]
- Zhou, T.; Xu, K.; Xia, X.; Xie, W.; Xu, J. Achievable Rate Optimization for Aerial Intelligent Reflecting Surface-Aided Cell-Free Massive MIMO System. IEEE Access 2021, 9, 3828–3837. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, V.; Nguyen, H.V.; Ngo, H.Q.; Chatzinotas, S.; Juntti, M. Downlink Throughput of Cell-Free Massive MIMO Systems Assisted by Hybrid Relay-Reflecting Intelligent Surfaces. In Proceedings of the ICC-2022 IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022. [Google Scholar]
- Zhou, T.; Xu, K.; Shen, Z.; Xie, W.; Zhang, D.; Xu, J. AoA-Based Positioning for Aerial Intelligent Reflecting Surface-Aided Wireless Communications: An Angle-Domain Approach. IEEE Wirel. Commun. Lett. 2022, 11, 761–765. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation. IEEE Trans. Wirel. Commun. 2020, 19, 77–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L. A Joint Precoding Framework for Wideband Reconfigurable Intelligent Surface-Aided Cell-Free Network. IEEE Trans. Signal Process. 2021, 69, 4085–4101. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Xue, K.; Fang, Y.; Sun, Q. Secure Transmission by Leveraging Multiple Intelligent Reflecting Surfaces in MISO Systems. IEEE Trans. Mob. Comput. 2023, 22, 2387–2401. [Google Scholar] [CrossRef]
- Guan, X.; Wu, Q.; Zhang, R. Intelligent Reflecting Surface Assisted Secrecy Communication: Is Artificial Noise Helpful or Not? IEEE Wirel. Commun. Lett. 2020, 9, 778–782. [Google Scholar] [CrossRef]
- Li, Q.; Hong, M.; Wai, H.T.; Liu, Y.F.; Ma, W.K.; Luo, Z.Q. Transmit Solutions for MIMO Wiretap Channels using Alternating Optimization. IEEE J. Sel. Areas Commun. 2013, 31, 1714–1727. [Google Scholar] [CrossRef]
Bandwidth | 180 MHz |
30 dBm | |
30 dBm | |
Noise power of user/Eve | −80 dBm |
Antennas of each AP and SJD | Q = = 2 |
Path loss (AP/jammer–IRS) | |
Path loss (AP–user/Eve) | |
Path loss (IRS–user/Eve) | |
Rician factor (AP/jammer–IRS) | |
Rician factor (AP/IRS–user/Eve) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Xie, W.; Xu, K.; Xia, X.; Li, N.; Wu, H. Multi-Intelligent Reflecting Surfaces and Artificial Noise-Assisted Cell-Free Massive MIMO Against Simultaneous Jamming and Eavesdropping. Sensors 2024, 24, 7326. https://doi.org/10.3390/s24227326
Hu H, Xie W, Xu K, Xia X, Li N, Wu H. Multi-Intelligent Reflecting Surfaces and Artificial Noise-Assisted Cell-Free Massive MIMO Against Simultaneous Jamming and Eavesdropping. Sensors. 2024; 24(22):7326. https://doi.org/10.3390/s24227326
Chicago/Turabian StyleHu, Huazhi, Wei Xie, Kui Xu, Xiaochen Xia, Na Li, and Huaiwu Wu. 2024. "Multi-Intelligent Reflecting Surfaces and Artificial Noise-Assisted Cell-Free Massive MIMO Against Simultaneous Jamming and Eavesdropping" Sensors 24, no. 22: 7326. https://doi.org/10.3390/s24227326
APA StyleHu, H., Xie, W., Xu, K., Xia, X., Li, N., & Wu, H. (2024). Multi-Intelligent Reflecting Surfaces and Artificial Noise-Assisted Cell-Free Massive MIMO Against Simultaneous Jamming and Eavesdropping. Sensors, 24(22), 7326. https://doi.org/10.3390/s24227326