Trace Acetylene Gas Detection Based on a Miniaturized Y-Sphere Coupled Photoacoustic Sensor
Abstract
:1. Introduction
2. Sensor Design
3. Experiment Results and Discussion
3.1. Instrumentation
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mashhadzadeh, A.H.; Ghanbari, M.; Koochaki, A.; Seyyedbarzegar, S.; Ahangari, M.G. Experiment and Theory for Acetylene Adsorption in Transformer Oil. J. Mol. Struct. 2021, 1230, 129860. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, J.; Pan, Y.; Lu, P. Differential Photoacoustic Spectroscopy for Flow Gas Detection Based on Single Microphone. Photoacoustics 2024, 38, 100624. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, M.S.; Jung, H.; Choe, Y.-S.; Kim, W.; Song, Y.G.; Kang, C.-Y.; Lee, H.-S.; Lee, W. Selective C2H2 Detection with High Sensitivity Using SnO2 Nanorod Based Gas Sensors Integrated with a Gas Chromatography. Sens. Actuators B Chem. 2020, 307, 127598. [Google Scholar] [CrossRef]
- Xing, M.; Ding, W.; Li, H.; Zhang, T. A Power Transformer Fault Prediction Method through Temporal Convolutional Network on Dissolved Gas Chromatography Data. Secur. Commun. Netw. 2022, 2022, 5357412. [Google Scholar] [CrossRef]
- Fan, J.; Wang, F.; Sun, Q.; Ye, H.; Jiang, Q. Application of Polycrystalline SnO2 Sensor Chromatographic System to Detect Dissolved Gases in Transformer Oil. Sens. Actuators B Chem. 2018, 267, 636–646. [Google Scholar] [CrossRef]
- Wu, G.; Xing, J.; Gong, Z.; Ma, J.; Fan, Y.; Wu, X.; Peng, W.; Yu, Q.; Mei, L. Single Fiber-Type Double Cavity Enhanced Photoacoustic Spectroscopy Sensor for Trace Methane Sensing. J. Light. Technol. 2024, 42, 3393–3398. [Google Scholar] [CrossRef]
- Gong, Z.; Chen, K.; Yang, Y.; Zhou, X.; Yu, Q. Photoacoustic Spectroscopy Based Multi-Gas Detection Using High-Sensitivity Fiber-Optic Low-Frequency Acoustic Sensor. Sens. Actuators B Chem. 2018, 260, 357–363. [Google Scholar] [CrossRef]
- Sampaolo, A.; Menduni, G.; Patimisco, P.; Giglio, M.; Passaro, V.M.N.; Dong, L.; Wu, H.; Tittel, F.K.; Spagnolo, V. Quartz-Enhanced Photoacoustic Spectroscopy for Hydrocarbon Trace Gas Detection and Petroleum Exploration. Fuel 2020, 277, 118118. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, Y.; Gong, Z.; Fan, Y.; Xing, J.; Wu, X.; Ma, J.; Peng, W.; Yu, Q.; Mei, L. A Mini-Resonant Photoacoustic Sensor Based on a Sphere-Cylinder Coupled Acoustic Resonator for High-Sensitivity Trace Gas Sensing. Photoacoustics 2024, 37, 100595. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Zheng, H.; Yu, Y.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Beat Frequency Quartz-Enhanced Photoacoustic Spectroscopy for Fast and Calibration-Free Continuous Trace-Gas Monitoring. Nat. Commun. 2017, 8, 15331. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, S.; He, Y.; Zhou, S.; Qi, L.; Ma, Y. Differential Quartz-Enhanced Photoacoustic Spectroscopy. Appl. Phys. Lett. 2023, 122, 241103. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, S.; Fang, C.; He, Y.; Sun, H.; Liu, J.; Ma, Y. A Highly Sensitive LITES Sensor Based on a Multi-Pass Cell with Dense Spot Pattern and a Novel Quartz Tuning Fork with Low Frequency. OEA 2024, 7, 230230. [Google Scholar] [CrossRef]
- Wu, H.; Yin, X.; Dong, L.; Pei, K.; Sampaolo, A.; Patimisco, P.; Zheng, H.; Ma, W.; Zhang, L.; Yin, W.; et al. Simultaneous Dual-Gas QEPAS Detection Based on a Fundamental and Overtone Combined Vibration of Quartz Tuning Fork. Appl. Phys. Lett. 2017, 110, 121104. [Google Scholar] [CrossRef]
- Qiao, S.; He, Y.; Sun, H.; Patimisco, P.; Sampaolo, A.; Spagnolo, V.; Ma, Y. Ultra-Highly Sensitive Dual Gases Detection Based on Photoacoustic Spectroscopy by Exploiting a Long-Wave, High-Power, Wide-Tunable, Single-Longitudinal-Mode Solid-State Laser. Light. Sci. Appl. 2024, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, H.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; Jia, S.; Dong, L. Quartz-Enhanced Multiheterodyne Resonant Photoacoustic Spectroscopy. Light. Sci. Appl. 2024, 13, 77. [Google Scholar] [CrossRef]
- Guo, M.; Chen, K.; Yang, B.; Zhang, G.; Zhao, X.; Li, C. Miniaturized Anti-Interference Cantilever-Enhanced Fiber-Optic Photoacoustic Methane Sensor. Sens. Actuators B Chem. 2022, 370, 132446. [Google Scholar] [CrossRef]
- Wu, G.; Wu, X.; Gong, Z.; Xing, J.; Fan, Y.; Ma, J.; Peng, W.; Yu, Q.; Mei, L. Highly Sensitive Trace Gas Detection Based on a Miniaturized 3D-Printed Y-Type Resonant Photoacoustic Cell. Opt. Express 2023, 31, 34213. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Yang, T.; Fan, S.; Cheng, H.; Xu, G.; Zhang, Y.; Zhou, H. Detection of Trace Carbon Monoxide Based on Cantilever Enhanced Photoacoustic Spectroscopy at 2.33 Μm. Infrared Phys. Technol. 2022, 126, 104364. [Google Scholar] [CrossRef]
- Wu, G.; Gong, Z.; Li, H.; Ma, J.; Chen, K.; Peng, W.; Yu, Q.; Mei, L. High-Sensitivity Multitrace Gas Simultaneous Detection Based on an All-Optical Miniaturized Photoacoustic Sensor. Anal. Chem. 2022, 94, 12507–12513. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Li, L.; Yu, Q. An All-Optical Photoacoustic Spectrometer for Trace Gas Detection. Sens. Actuators B Chem. 2011, 153, 214–218. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Yin, X. Photoacoustic Spectroscopy for Detection of Trace C2H2 Using Ellipsoidal Photoacoustic Cell. Opt. Commun. 2021, 487, 126764. [Google Scholar] [CrossRef]
- Gong, Z.; Chen, K.; Chen, Y.; Mei, L.; Yu, Q. Integration of T-Type Half-Open Photoacoustic Cell and Fiber-Optic Acoustic Sensor for Trace Gas Detection. Opt. Express 2019, 27, 18222. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guan, Y.; Jiang, X.; Wu, G.; Gong, Z.; Wang, X.; Tao, P.; Peng, W.; Yu, Q.; Mei, L. A Dual-resonance Enhanced Photoacoustic Spectroscopy Gas Sensor Based on a Fiber Optic Cantilever Beam Microphone and a Spherical Photoacoustic Cell. Microw. Opt. Technol. Lett. 2024, 66, e34213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, S.; Li, D.; Shi, Z.; Liang, Q. Trace Acetylene Gas Detection Based on a Miniaturized Y-Sphere Coupled Photoacoustic Sensor. Sensors 2024, 24, 7274. https://doi.org/10.3390/s24227274
Chen X, Wang S, Li D, Shi Z, Liang Q. Trace Acetylene Gas Detection Based on a Miniaturized Y-Sphere Coupled Photoacoustic Sensor. Sensors. 2024; 24(22):7274. https://doi.org/10.3390/s24227274
Chicago/Turabian StyleChen, Xiaohong, Sen Wang, Dongming Li, Zhao Shi, and Qiang Liang. 2024. "Trace Acetylene Gas Detection Based on a Miniaturized Y-Sphere Coupled Photoacoustic Sensor" Sensors 24, no. 22: 7274. https://doi.org/10.3390/s24227274
APA StyleChen, X., Wang, S., Li, D., Shi, Z., & Liang, Q. (2024). Trace Acetylene Gas Detection Based on a Miniaturized Y-Sphere Coupled Photoacoustic Sensor. Sensors, 24(22), 7274. https://doi.org/10.3390/s24227274