Inductive Frequency-Coded Sensor for Non-Destructive Structural Strain Monitoring of Composite Materials
Abstract
1. Introduction
2. Analytical Model
3. Design Procedure
3.1. Numerical Design of the Optimal SRs
3.2. Prototype Fabrication
4. Deformation Analysis
4.1. Numerical Set-Up and Results
4.2. Experimental Set-Up and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clyne, T.W.; Hull, D. An Introduction to Composite Materials, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials Selection in Mechanical Design; Butterworth-Heinemann: Oxford, UK, 1993; Volume 3, pp. C7-1–C7-9. [Google Scholar] [CrossRef]
- Campbell, F. Structural Composite Materials; ASM International: Materials Park, OH, USA, 2010. [Google Scholar] [CrossRef]
- Nagavally, R.R. Composite Materials—History, Types, Fabrication Techniques, Advantages, and Applications. Int. J. Mech. Prod. Eng. 2017, 5, 82–87. [Google Scholar]
- Morampudi, P.; Namala, K.K.; Gajjela, Y.K.; Barath, M.; Prudhvi, G. Review on glass fiber reinforced polymer composites. Mater. Today Proc. 2021, 43, 314–319. [Google Scholar] [CrossRef]
- Sima, W.; He, J.; Sun, P.; Yang, M.; Yin, Z.; Li, C. Novel nanostructure composite dielectric with high insulation performance: Silica-based nanometer-sized porous composite insulating paper reinforced by ceramic fibers. Scr. Mater. 2020, 181, 58–61. [Google Scholar] [CrossRef]
- El-Hofy, M.H.; El-Hofy, H. Laser beam machining of carbon fiber reinforced composites: A review. Int. J. Adv. Manuf. Technol. 2019, 101, 2965–2975. [Google Scholar] [CrossRef]
- Ono, K. A Comprehensive Report on Ultrasonic Attenuation of Engineering Materials, Including Metals, Ceramics, Polymers, Fiber-Reinforced Composites, Wood, and Rocks. Appl. Sci. 2020, 10, 2230. [Google Scholar] [CrossRef]
- Chillara, V.S.C.; Dapino, M.J. Review of Morphing Laminated Composites. Appl. Mech. Rev. 2020, 72, 010801. [Google Scholar] [CrossRef]
- Di Boon, Y.; Joshi, S.C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites. Mater. Today Commun. 2020, 22, 100830. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Staab, G.H. Introduction to Composite Materials. In Laminar Composites; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1–16. [Google Scholar] [CrossRef]
- Gao, X.; Yuan, L.; Fu, Y.; Yao, X.; Yang, H. Prediction of mechanical properties on 3D braided composites with void defects. Compos. Part B Eng. 2020, 197, 108164. [Google Scholar] [CrossRef]
- Nikishkov, Y.; Seon, G.; Makeev, A. Structural analysis of composites with porosity defects based on X-ray computed tomography. J. Compos. Mater. 2013, 48, 2131–2144. [Google Scholar] [CrossRef]
- Talreja, R. Manufacturing defects in composites and their effects on performance. In Polymer Composites in the Aerospace Industry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 83–97. [Google Scholar] [CrossRef]
- Castaings, M.; Singh, D.; Viot, P. Sizing of impact damages in composite materials using ultrasonic guided waves. NDT E Int. 2012, 46, 22–31. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G.; de Moura, M.F. Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. J. Compos. Mater. 2003, 37, 1415–1438. [Google Scholar] [CrossRef]
- Brunner, A.; Blackman, B.; Davies, P. A status report on delamination resistance testing of polymer–matrix composites. Eng. Fract. Mech. 2007, 75, 2779–2794. [Google Scholar] [CrossRef]
- Iervolino, O.; Meo, M. A spiral passive electromagnetic sensor (SPES) for wireless and wired structural health monitoring. Meas. Sci. Technol. 2016, 27, 045601. [Google Scholar] [CrossRef]
- Jolly, M.R.; Prabhakar, A.; Sturzu, B.; Hollstein, K.; Singh, R.; Thomas, S.; Foote, P.; Shaw, A. Review of Non-destructive Testing (NDT) Techniques and their Applicability to Thick Walled Composites. Procedia CIRP 2015, 38, 129–136. [Google Scholar] [CrossRef]
- Ismail, M.F.; Sultan, M.T.; Hamdan, A.; Shah, A.U.; Jawaid, M. Low velocity impact behaviour and post-impact characteristics of kenaf/glass hybrid composites with various weight ratios. J. Mater. Res. Technol. 2019, 8, 2662–2673. [Google Scholar] [CrossRef]
- Kumar, T.V.; Prasad, V.M.M.; Santhosh, D.; Prasanth, C.; Ranjith, K. Evaluation of mechanical and interfacial properties of carbon fiber reinforced polymer (CFRP) composite materials. Mater. Today Proc. 2020, 21, 477–482. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12, 1687814020913761. [Google Scholar] [CrossRef]
- Harara, W. Evaluation of the 6082-T6 Aluminum Thick Plates Welded Joints Performance for High Stress Industrial Application According to European Standards. Russ. J. Nondestruct. Test. 2021, 57, 337–342. [Google Scholar] [CrossRef]
- Deepak, J.; Raja, V.B.; Srikanth, D.; Surendran, H.; Nickolas, M. Non-destructive testing (NDT) techniques for low carbon steel welded joints: A review and experimental study. Mater. Today Proc. 2021, 44, 3732–3737. [Google Scholar] [CrossRef]
- Diamanti, K.; Soutis, C. Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 2010, 46, 342–352. [Google Scholar] [CrossRef]
- Maio, L.; Fromme, P. On ultrasound propagation in composite laminates: Advances in numerical simulation. Prog. Aerosp. Sci. 2021, 129, 100791. [Google Scholar] [CrossRef]
- Bragança, M.O.; Hasparyk, N.P.; Bronholo, J.L.; Silva, A.S.; Portella, K.F.; Kuperman, S.C. Electrochemical impedance spectroscopy and ultrasound for monitoring expansive reactions and their interactions on cement composites. Constr. Build. Mater. 2021, 305, 124726. [Google Scholar] [CrossRef]
- Planinsic, G. Infrared Thermal Imaging: Fundamentals, Research and Applications. Eur. J. Phys. 2011, 32, 1431. [Google Scholar] [CrossRef]
- Rippa, M.; Pagliarulo, V.; Napolitano, F.; Valente, T.; Russo, P. Infrared Imaging Analysis of Green Composite Materials during Inline Quasi-Static Flexural Test: Monitoring by Passive and Active Approaches. Materials 2023, 16, 3081. [Google Scholar] [CrossRef]
- Kaya, Y.; Safak, E. Real-time analysis and interpretation of continuous data from structural health monitoring (SHM) systems. Bull. Earthq. Eng. 2014, 13, 917–934. [Google Scholar] [CrossRef]
- Noel, A.B.; Abdaoui, A.; Elfouly, T.; Ahmed, M.H.; Badawy, A.; Shehata, M.S. Structural Health Monitoring Using Wireless Sensor Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2017, 19, 1403–1423. [Google Scholar] [CrossRef]
- Papantoniou, A.; Rigas, G.; Alexopoulos, N.D. Assessment of the strain monitoring reliability of fiber Bragg grating sensor (FBGs) in advanced composite structures. Compos. Struct. 2011, 93, 2163–2172. [Google Scholar] [CrossRef]
- Cheng, X.; Cai, J.; Xu, J.; Gong, D. High-Performance Strain Sensors Based on Au/Graphene Composite Films with Hierarchical Cracks for Wide Linear-Range Motion Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 39230–39239. [Google Scholar] [CrossRef]
- Biondi, A.; Wu, R.; Cao, L.; Gopalan, B.; Ivey, J.; Garces, C.; Mitchell, M.; Williams, J.D.; Wang, X. Fiber Optic Sensing Textile for Strain Monitoring in Composite Substrates. Sensors 2022, 22, 9262. [Google Scholar] [CrossRef]
- Lemistre, M.B.; Balageas, D.L. Health monitoring system for composite material using electromagnetic field measurement. In Proceedings of the NDE For Health Monitoring and Diagnostics, San Diego, CA, USA, 17–21 March 2002; pp. 272–281. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.; Haigh, A.; Soutis, C.; Gibson, A. Review of microwave techniques used in the manufacture and fault detection of aircraft composites. Aeronaut. J. 2020, 125, 151–179. [Google Scholar] [CrossRef]
- Abbasi, Z.; Niazi, H.; Abdolrazzaghi, M.; Chen, W.; Daneshmand, M. Monitoring pH Level Using High-Resolution Microwave Sensor for Mitigation of Stress Corrosion Cracking in Steel Pipelines. IEEE Sens. J. 2020, 20, 7033–7043. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Thundat, T.; Daneshmand, M. High resolution microwave microstrip resonator for sensing applications. Sens. Actuators A Phys. 2015, 233, 224–230. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y. Thermally Stable Wireless Patch Antenna Sensor for Strain and Crack Sensing. Sensors 2020, 20, 3835. [Google Scholar] [CrossRef] [PubMed]
- Kostogorova-Beller, Y.; Whitford, J.; Dudley, K.; Menon, A.; Chakravarthy, A.; Steck, J. A Study on Smart SansEC Skin Sensing for Real-Time Monitoring of Flexible Structures. IEEE Sens. J. 2018, 18, 2836–2844. [Google Scholar] [CrossRef]
- Rangaiah, P.K.B.; Mandal, B.; Avetisyan, E.; Chezhian, A.S.; Augustine, B.; Perez, M.D.; Augustine, R. Preliminary Analysis of Burn Degree Using Non-invasive Microwave Spiral Resonator Sensor for Clinical Applications. Front. Med. Technol. 2022, 4, 859498. [Google Scholar] [CrossRef]
- Melik, R.; Perkgoz, N.K.; Unal, E.; Puttlitz, C.; Demir, H.V. Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. J. Micromechanics Microengineering 2008, 18, 115017. [Google Scholar] [CrossRef]
- Mukherjee, S.; Shi, X.; Udpa, L.; Udpa, S.; Deng, Y.; Chahal, P. Design of a Split-Ring Resonator Sensor for Near-Field Microwave Imaging. IEEE Sens. J. 2018, 18, 7066–7076. [Google Scholar] [CrossRef]
- Dey, S.; Bhattacharyya, R.; Sarma, S.E.; Karmakar, N.C. A Novel “Smart Skin” Sensor for Chipless RFID-Based Structural Health Monitoring Applications. IEEE Internet Things J. 2020, 8, 3955–3971. [Google Scholar] [CrossRef]
- Masi, A.; Brizi, D.; Monorchio, A. Millimetric Inclusion Detection Through a Contactless Microwave Spiral Sensor for Biomedical Applications. IEEE Sens. J. 2023, 23, 12796–12807. [Google Scholar] [CrossRef]
- Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, P.; Halas, N.J. Aluminum for Plasmonics. ACS Nano 2013, 8, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Courjon, D.; Bainier, C. Near field microscopy and near field optics. Rep. Prog. Phys. 1994, 57, 989–1028. [Google Scholar] [CrossRef]
- Falchi, M.; Rotundo, S.; Brizi, D.; Monorchio, A. Analysis and design of holographic magnetic metasurfaces in the very near field for sensing applications at quasi-static regime. Sci. Rep. 2023, 13, 9220. [Google Scholar] [CrossRef] [PubMed]
- Bilotti, F.; Toscano, A.; Vegni, L.; Aydin, K.; Alici, K.B.; Ozbay, E. Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions. IEEE Trans. Microw. Theory Technol. 2007, 55, 2865–2873. [Google Scholar] [CrossRef]
- Lee, G.-A.; Megahed, M.; De Flaviis, F. Low-cost compact spiral inductor resonator filters for system-in-a-package. IEEE Trans. Adv. Packag. 2005, 28, 761–771. [Google Scholar] [CrossRef]
- Brizi, D.; Fontana, N.; Costa, F.; Monorchio, A. Accurate Extraction of Equivalent Circuit Parameters of Spiral Resonators for the Design of Metamaterials. IEEE Trans. Microw. Theory Tech. 2018, 67, 626–633. [Google Scholar] [CrossRef]
- Lazzoni, V.; Brizi, D.; Monorchio, A. Spatial filtering magnetic metasurface for misalignment robustness enhancement in wireless power transfer applications. Sci. Rep. 2023, 13, 560. [Google Scholar] [CrossRef]
- Usai, P.; Brizi, D.; Monorchio, A. Low Frequency Magnetic Metasurface for Wireless Power Transfer Applications: Reducing Losses Effect and Optimizing Loading Condition. IEEE Access 2023, 11, 66579–66586. [Google Scholar] [CrossRef]
- Ellingson, S.W. Electromagnetics; Virginia Tech Publishing: Blacksburg, VA, USA, 2020; Volume 2. [Google Scholar]
- Costa, F.; Brizi, D.; Genovesi, S.; Monorchio, A.; Manara, G.; Requena, F.; Perret, E. Wireless Detection of Water Level by Using Spiral Resonators Operating in Sub-Ghz Range. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 197–200. [Google Scholar] [CrossRef]
- Davis, Z.J.; Svendsen, W.; Boisen, A. Design, fabrication and testing of a novel MEMS resonator for mass sensing applications. Microelectron. Eng. 2007, 84, 1601–1605. [Google Scholar] [CrossRef]
- Baena, J.D.; Marqués, R.; Medina, F.; Martel, J. Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 2004, 69, 014402. [Google Scholar] [CrossRef]
- Elgeziry, M.; Costa, F.; Genovesi, S. Design Guidelines for Sensors Based on Spiral Resonators. Sensors 2022, 22, 2071. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Lee, J.-H.; Lim, S.-H.; Shin, D.-H.; Myung, N.-H. A Novel Compact Microstrip Bandstop Filter Based on Spiral Resonators. In Proceedings of the 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, P.; Chen, L.; Tan, C.Y.; Ong, C.K. Analysis of quality factors of spiral resonators. Microw. Opt. Technol. Lett. 2006, 48, 439–443. [Google Scholar] [CrossRef]
- Hsieh, Y.-C.; Peng, T.-S.; Wang, L.A. Millimeter-Sized Microfiber Coil Resonators With Enhanced Quality Factors by Increasing Coil Numbers. IEEE Photon-Technol. Lett. 2012, 24, 569–571. [Google Scholar] [CrossRef]
- Brinker, K.; Zoughi, R. Chipless RFID Tags as Microwave Sensors for Delamination Detection in Layered Structures. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–21 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, W.; Wang, Y.; Fan, Q.; Duan, X.; Xie, M. Spiral Resonator-based Corneal Contact Lens For Intraocular Pressure Monitoring. In Proceedings of the 2022 28th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 16–18 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ferreira, G.M.; Monteiro, D.W.d.L.; Guimaraes, B.H.S.; de Oliveira, F.A.C. Resonant Spiral Micromachined Structure and the Effects of a Curved Geometry. In Proceedings of the 2018 33rd Symposium on Microelectronics Technology and Devices (SBMicro), Bento Gonçalves, Brazil, 27–31 August 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, S.; Tong, M.S. Mechanical Deformation Detection of Building Structures Using Microstrip Patch Antennas as Sensors. IEEE Sens. J. 2018, 18, 8676–8684. [Google Scholar] [CrossRef]
- Kalansuriya, P.; Bhattacharyya, R.; Sarma, S. RFID Tag Antenna-Based Sensing for Pervasive Surface Crack Detection. IEEE Sens. J. 2013, 13, 1564–1570. [Google Scholar] [CrossRef]
- Jang, S.-D.; Kang, B.-W.; Kim, J. Frequency selective surface based passive wireless sensor for structural health monitoring. Smart Mater. Struct. 2012, 22, 025002. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiao, T.; Zhao, P.; Liu, J.; Xiao, H. Development of a Distributed Crack Sensor Using Coaxial Cable. Sensors 2016, 16, 1198. [Google Scholar] [CrossRef]
- Lopato, P.; Herbko, M. Microwave Structural Health Monitoring Sensor for Deformation Measurement of Bended Steel Structures: Influence of Curvature Effect. Radioengineering 2017, 26, 1060–1066. [Google Scholar] [CrossRef]
- Song, J.-D.; Kim, Y.-G.; Park, T.-H. SMT defect classification by feature extraction region optimization and machine learning. Int. J. Adv. Manuf. Technol. 2018, 101, 1303–1313. [Google Scholar] [CrossRef]
- Dabetwar, S.; Ekwaro-Osire, S.; Dias, J.P. Damage Classification of Composites Using Machine Learning. In Proceedings of the Volume 13: Safety Engineering, Risk, and Reliability Analysis, Salt Lake City, UT, USA, 11–14 November 2019; p. V013T13A017. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network. Smart Mater. Struct. 2004, 13, 957–969. [Google Scholar] [CrossRef]
Parameters | SR1 | SR2 | SR3 |
---|---|---|---|
Longer side length | 50.45 mm | 40.45 mm | 30.45 mm |
Shorter side length | 15.45 mm | 15.45 mm | 15.45 mm |
Number of turns | 2.5 | 2.75 | 2.75 |
Strip width | 0.45 mm | 0.45 mm | 0.45 mm |
Strip thickness | 35 µm | 35 µm | 35 µm |
Strip spacing | 0.45 mm | 0.45 mm | 0.45 mm |
Q-Factor | 115.34 | 113.01 | 37.50 |
Resonant Frequency | 269 MHz | 283 MHz | 359 MHz |
Ref | Sensor Structure | Operating Frequency | Investigated Material | Detection Method | Advantages | Disadvantages | Application Scenarios |
---|---|---|---|---|---|---|---|
[66] | Quarter-Wavelength Patch Antenna with Coaxial Feed | 2.4 GHz | Metal | Changes in resonant frequency and impedance | Miniaturized, sensitive | Substrate material affects performance, deterioration of mechanical deformation | Deformation Monitoring |
[67] | Chip-based UHF RFID | 915 MHz | Metal | Variations in antenna impedance due to cracks | Wireless, passive, can detect fine cracks | Limited to specific materials, environmental sensitivity | Surface Crack Detection |
[63] | Chipless RFID | 2.45 GHz | Metal | Electromagnetic backscatter changes due to cracks | Wireless, passive, cost-effective | Limited to conductive materials | Surface Crack Detection |
[68] | Frequency-Selective Surface (FSS) Sensors | 10.2 GHz | Composite Materials | Changes in resonant frequency due to cracks or deformation | Can monitor large areas, sensitive | Complex design, may need precise alignment | Strain Sensing and Crack Detection |
[69] | Coaxial Cable Sensor | 1–10 GHz | Composite Materials | ETDR (Electrical Time Domain Reflectometry) | High sensitivity, real-time monitoring | Requires complex setup, potentially high cost | Crack Detection |
[70] | Patch antenna fed by Microstrip lines | 12 GHz | Metal | Changes in resonant frequency and impedance due to deformation | Accurate, miniaturized | Affected by substrate material, environmental conditions | Deformation Monitoring |
T.W. | SRs Array Sensor | 269–359 MHz | Composite Materials | Changes in impedance amplitude due to deformation | Sensitive, customizable (to extend the investigation area) while requiring only one connectorization, cost-effective, spatial localization, high penetration depth | Environmental sensitivity | Deformation Sensing and Potential Defects Monitoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masi, A.; Falchi, M.; Brizi, D.; Canicattì, E.; Nenna, G.; Monorchio, A. Inductive Frequency-Coded Sensor for Non-Destructive Structural Strain Monitoring of Composite Materials. Sensors 2024, 24, 6725. https://doi.org/10.3390/s24206725
Masi A, Falchi M, Brizi D, Canicattì E, Nenna G, Monorchio A. Inductive Frequency-Coded Sensor for Non-Destructive Structural Strain Monitoring of Composite Materials. Sensors. 2024; 24(20):6725. https://doi.org/10.3390/s24206725
Chicago/Turabian StyleMasi, Angelica, Martina Falchi, Danilo Brizi, Eliana Canicattì, Guido Nenna, and Agostino Monorchio. 2024. "Inductive Frequency-Coded Sensor for Non-Destructive Structural Strain Monitoring of Composite Materials" Sensors 24, no. 20: 6725. https://doi.org/10.3390/s24206725
APA StyleMasi, A., Falchi, M., Brizi, D., Canicattì, E., Nenna, G., & Monorchio, A. (2024). Inductive Frequency-Coded Sensor for Non-Destructive Structural Strain Monitoring of Composite Materials. Sensors, 24(20), 6725. https://doi.org/10.3390/s24206725