Integrated Estimation of Stress and Damage in Concrete Structure Using 2D Convolutional Neural Network Model Learned Impedance Responses of Capsule-like Smart Aggregate Sensor
Abstract
:1. Introduction
2. Methodology
2.1. Scheme of Concrete Damage Monitoring
2.2. CSA-Based EMI Measurement Technique
2.3. Databank of Stress–Damage EMI Signals
2.4. Design of 2D CNN Deep Regression and Classification Model
2.4.1. Architecture of 2D CNN Model
2.4.2. Evaluation of Deep Regression Learning
2.4.3. Evaluation of Deep Classification Learning
FNR = FN/(TP + FN)
Precision = TP/(TP + FP)
FPR = FP/(TP + FP)
Accuracy = TP/(TP + FP + FN)
3. Experimental Test
3.1. Fabrication of CSA-Embedded Concrete Cylinder
3.2. Experimental Setup
3.3. Stress–Damage EMI Signatures of CSA-Embedded Concrete Cylinder
3.4. Statistical Quantification of Stress–Damage EMI Responses
4. Evaluation of 2D CNN-Based Deep Regression and Classification Model
4.1. Stress and Damage Monitoring for Noise-Contaminated Stress–Damage EMI Data
4.1.1. Data Preparation
4.1.2. Training Results
4.1.3. Stress Estimation
4.1.4. Damage Identification
4.2. Stress and Damage Monitoring for Untrained Stress–Damage EMI Data
4.2.1. Data Preparation
4.2.2. Training Results
4.2.3. Stress Estimation
4.2.4. Damage Identification
Damage Identification Results
Discussion on Damage Identification Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Comparison of 2D CNN Architectures
No | Type | Depth | Filter | Stride | No | Type | Depth | Filter | Stride |
---|---|---|---|---|---|---|---|---|---|
Model M1 | |||||||||
1 | Conv1 | 18 | 3 × 3 | 1 | 5 | Fc1 | 1 | - | - |
2 | ReLU | - | - | - | 6 | Fc2 | 4 | - | - |
3 | Maxpool1 | 18 | 3 × 3 | 1 | 7 | Regression | - | - | - |
4 | GAP | - | - | - | 8 | Classification | - | - | - |
Model M2 | |||||||||
1 | Conv1 | 18 | 3 × 3 | 1 | 6 | GAP | - | - | - |
2 | ReLU | - | - | - | 7 | Fc1 | 1 | - | - |
3 | Conv2 | 18 | 3 × 3 | 1 | 8 | Fc2 | 4 | - | - |
4 | ReLU | - | - | - | 9 | Regression | - | - | - |
5 | Maxpool1 | - | 2 × 2 | 2 | 10 | Classification | - | - | - |
Model M3 (see Table 1) |
References
- Khan, M.K.I.; Lee, C.K.; Zhang, Y.X.; Rana, M.M. Compressive behaviour of ECC confined concrete partially encased steel composite columns using high strength steel. Constr. Build. Mater. 2020, 265, 120783. [Google Scholar] [CrossRef]
- Smolana, A.; Klemczak, B.; Azenha, M.; Schlicke, D. Experiences and analysis of the construction process of mass foundation slabs aimed at reducing the risk of early age cracks. J. Build. Eng. 2021, 44, 102947. [Google Scholar] [CrossRef]
- Suzuki, T.; Shiotani, T.; Ohtsu, M. Evaluation of cracking damage in freeze-thawed concrete using acoustic emission and X-ray CT image. Constr. Build. Mater. 2017, 136, 619–626. [Google Scholar] [CrossRef]
- Tan, X.; Abu-Obeidah, A.; Bao, Y.; Nassif, H.; Nasreddine, W. Measurement and visualization of strains and cracks in CFRP post-tensioned fiber reinforced concrete beams using distributed fiber optic sensors. Autom. Constr. 2021, 124, 103604. [Google Scholar] [CrossRef]
- Ong, C.-W.; Yang, Y.; Naidu, A.S.K.; Lu, Y.; Soh, C.K. Application of the electromechanical impedance method for the identification of in-situ stress in structures. Smart Struct. Devices Syst. 2002, 4935, 503–514. [Google Scholar]
- Neild, S.A.; Williams, M.S.; Mcfadden, P.D. Development of a Vibrating Wire Strain Gauge for Measuring Small Strains in Concrete Beams. Strain 2005, 41, 3–9. [Google Scholar] [CrossRef]
- Lee, S.-J.; Ahn, D.; You, I.; Yoo, D.-Y.; Kang, Y.-S. Wireless cement-based sensor for self-monitoring of railway concrete infrastructures. Autom. Constr. 2020, 119, 103323. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, F.; Chan, T.-M.; Cao, S. Theoretical Stress–Strain Model for Concrete in Steel-Reinforced Concrete Columns. J. Struct. Eng. 2019, 145, 04019009. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Dang, N.-L.; Kim, J.-T. Advances and Challenges in impedance-based structural health monitoring. Struct. Monit. Maint. 2017, 4, 301–329. [Google Scholar]
- Liang, C.; Sun, F.P.; Rogers, C.A. Coupled Electro-Mechanical Analysis of Adaptive Material Systems-Determination of the Actuator Power Consumption and System Energy Transfer. J. Intell. Mater. Syst. Struct. 1994, 8, 335–343. [Google Scholar] [CrossRef]
- Narayanan, A.; Kocherla, A.; Subramaniam, K.V.L. PZT sensor array for local and distributed measurements of localized cracking in concrete. Smart Mater. Struct. 2018, 27, 075049. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.-L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17, 033001. [Google Scholar] [CrossRef]
- Kong, Q.; Fan, S.; Mo, Y.L.; Song, G. A novel embeddable spherical smart aggregate for structural health monitoring: Part II. Numerical and experimental verifications. Smart Mater. Struct. 2017, 26, 095051. [Google Scholar] [CrossRef]
- Li, G.; Luo, M.; Huang, J.; Li, W. Early-age concrete strength monitoring using smart aggregate based on electromechanical impedance and machine learning. Mech. Syst. Signal Process. 2023, 186, 109865. [Google Scholar] [CrossRef]
- Pham, Q.-Q.; Dang, N.-L.; Ta, Q.-B.; Kim, J.-T. Optimal Localization of Smart Aggregate Sensor for Concrete Damage Monitoring in PSC Anchorage Zone. Sensors 2021, 21, 6337. [Google Scholar] [CrossRef]
- Lan, C.; Liu, H.; Zhuang, S.; Wang, J.; Li, W.; Lin, G. Monitoring of crack repair in concrete using spherical smart aggregates based on electromechanical impedance (EMI) technique. Smart Mater. Struct. 2024, 33, 025031. [Google Scholar] [CrossRef]
- Pham, Q.-Q.; Ta, Q.-B.; Kim, J.-T. Capsule-like Smart Aggregate with Pre-Determined Frequency Range for Impedance-Based Stress Monitoring. Sensors 2022, 23, 434. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Smith, S.T.; Padilla, R.V.; Soh, C.K. Monitoring of concrete curing using the electromechanical impedance technique: Review and path forward. Struct. Health Monit. 2021, 20, 604–636. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Tuong Vy Phan, T.; Ho, D.-D.; Man Singh Pradhan, A.; Huynh, T.-C. Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring. Eng. Struct. 2022, 259, 114172. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Ta, Q.-B.; Ho, D.-D.; Kim, J.-T.; Huynh, T.-C. A method for automated bolt-loosening monitoring and assessment using impedance technique and deep learning. Dev. Built Environ. 2023, 14, 100122. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Ho, D.-D.; Huynh, T.-C. Electromechanical impedance-based prestress force prediction method using resonant frequency shifts and finite element modelling. Dev. Built Environ. 2022, 12, 100089. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.S.; Kim, N.; Ryu, E.M.; Kang, J.W. Learning to Detect Cracks on Damaged Concrete Surfaces Using Two-Branched Convolutional Neural Network. Sensors 2019, 19, 4796. [Google Scholar] [CrossRef] [PubMed]
- Ta, Q.-B.; Pham, Q.-Q.; Pham, N.-L.; Huynh, T.-C.; Kim, J.-T. Smart Aggregate-Based Concrete Stress Monitoring via 1D CNN Deep Learning of Raw Impedance Signals. Struct. Control Health Monit. 2024, 2024, 25. [Google Scholar] [CrossRef]
- Ta, Q.-B.; Pham, Q.-Q.; Pham, N.-L.; Kim, J.-T. Integrating the Capsule-like Smart Aggregate-Based EMI Technique with Deep Learning for Stress Assessment in Concrete. Sensors 2024, 24, 4738. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-T.; Kim, J.T.; Ta, Q.B.; Ho, D.D.; Phan, T.T.V.; Huynh, T.C. Deep learning-based functional assessment of piezoelectric-based smart interface under various degradations. Smart Struct. Syst. 2021, 28, 69–87. [Google Scholar]
- Yan, Q.; Liao, X.; Zhang, C.; Zhang, Y.; Luo, S.; Zhang, D. Intelligent monitoring and assessment on early-age hydration and setting of cement mortar through an EMI-integrated neural network. Measurement 2022, 203, 111984. [Google Scholar] [CrossRef]
- Ai, D.; Mo, F.; Han, Y.; Wen, J. Automated identification of compressive stress and damage in concrete specimen using convolutional neural network learned electromechanical admittance. Eng. Struct. 2022, 259, 114176. [Google Scholar] [CrossRef]
- Ai, D.; Cheng, J. A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network. Mech. Syst. Signal Process. 2023, 183, 109634. [Google Scholar] [CrossRef]
- Ai, D.; Mo, F.; Cheng, J.; Du, L. Deep learning of electromechanical impedance for concrete structural damage identification using 1-D convolutional neural networks. Constr. Build. Mater. 2023, 385, 131423. [Google Scholar] [CrossRef]
- Nawy, E.G. Prestressed Concrete. A Fundamental Approach; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Baptista, F.G.; Filho, J.V. Optimal Frequency Range Selection for PZT Transducers in Impedance-Based SHM Systems. IEEE Sens. J. 2010, 10, 1297–1303. [Google Scholar] [CrossRef]
- Pham, Q.-Q.; Ta, Q.-B.; Park, J.-H.; Kim, J.-T. Raspberry Pi Platform Wireless Sensor Node for Low-Frequency Impedance Responses of PZT Interface. Sensors 2022, 22, 9592. [Google Scholar] [CrossRef] [PubMed]
- Kocherla, A.; Subramaniam, K.V.L. Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression. Measurement 2020, 163, 108018. [Google Scholar] [CrossRef]
- Jalloh, A. Effects of Piezoelectric (PZT) Sensor Bonding and the Characteristics of the Host Structure on Impedance Based Structural Health Monitoring; The NASA Faculty Fellowship Program Research Reports 20050215318; National Aeronautics and Space Administration: Washington, DC, USA, 2005. [Google Scholar]
- Min, J.; Park, S.; Yun, C.-B. Impedance-based structural health monitoring using neural networks for autonomous frequency range selection. Smart Mater. Struct. 2010, 19, 125011. [Google Scholar] [CrossRef]
- Salman, S.; Liu, X. Overfitting mechanism and avoidance in deep neural networks. arXiv 2019, arXiv:1901.06566. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. arXiv 2015, arXiv:1050.03820. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Huynh, T.C.; Kim, J.T. Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique. Math. Probl. Eng. 2014, 2014, 784731. [Google Scholar] [CrossRef]
- Fisher, L. Probability and statistics. In Handbook of Applied Mathematics: Selected Results and Methods; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545. [Google Scholar]
- Ren, X.; Qin, Y.; Li, B.; Wang, B.; Yi, X.; Jia, L. A core space gradient projection-based continual learning framework for remaining useful life prediction of machinery under variable operating conditions. Reliab. Eng. Syst. Saf. 2024, 252, 110428. [Google Scholar] [CrossRef]
- Ho, D.D.; Huynh, T.C. Nondestructive crack detection in metal structures using impedance responses and artificial neural networks. Struct. Monit. Maint. 2022, 9, 221–235. [Google Scholar]
- Huynh, T.C.; Dang, N.L.; Kim, J.-T. PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage. Smart Struct. Syst. 2018, 22, 57–70. [Google Scholar]
No | Type | Depth | Filter | Stride | No | Type | Depth | Filter | Stride |
---|---|---|---|---|---|---|---|---|---|
1 | Conv1 | 18 | 3 × 3 | 1 | 8 | Maxpool2 | - | 2 × 2 | 2 |
2 | ReLU | - | - | - | 9 | GAP | - | - | - |
3 | Conv2 | 18 | 3 × 3 | 1 | 10 | Fc1 | 1 | - | - |
4 | ReLU | - | - | 11 | Fc2 | 4 | - | - | |
5 | Maxpool1 | - | 2 × 2 | 2 | 12 | Regression | - | - | - |
6 | Conv3 | 18 | 3 × 3 | 1 | 13 | Classification | - | - | - |
7 | ReLU | - | - | - |
Properties | Aluminum (6061-T6) | PZT 5A | Epoxy Layer | Concrete |
---|---|---|---|---|
Mass density, ρ (kg/m3) | 2700 | 7750 | 1090 | 2400 |
Young’s modulus, E (GPa) | 68.9 | 62.1 | 0.75 | 25.43 |
Poisson’s ratio, ν | 0.33 | 0.35 | 0.3 | 0.2 |
Dielectric loss factor, δ | 0.02 | 0.015 | 0.02 | |
Yield strength, σy (MPa) | 241 | |||
Compressive strength, σc (MPa) | 32.3 | 25.3 | ||
Damping loss factor, η | 0.0125 | |||
Dielectric constant, ε33T (F/m) | 1.53 × 10−8 | |||
Coupling constant, d31 (m/V) | −1.71 × 10−10 |
Stress Level | Observed Concrete Damage | Assigned Label | |
---|---|---|---|
Stress (MPa) | Damage Level | ||
S1 | No damage | 2.53 | DL0 |
S2 | No damage | 5.07 | DL0 |
S3 | Crack initiation | 7.61 | DL1 |
S4 | Crack propagation and spalling | 10.15 | DL2 |
S5 | Failure | 12.68 | DL3 |
Case | Scenario | Assigned Label | ||
---|---|---|---|---|
Training Set | Validation Set | Testing Set | ||
1 | Untrained S2 | 192 | 4 | 255 |
2 | Untrained S2, S4 | 144 | 3 | |
3 | Untrained S2, S3 | 144 | 3 | |
4 | Untrained S1, S3, S5 | 96 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ta, Q.-B.; Pham, N.-L.; Kim, J.-T. Integrated Estimation of Stress and Damage in Concrete Structure Using 2D Convolutional Neural Network Model Learned Impedance Responses of Capsule-like Smart Aggregate Sensor. Sensors 2024, 24, 6652. https://doi.org/10.3390/s24206652
Ta Q-B, Pham N-L, Kim J-T. Integrated Estimation of Stress and Damage in Concrete Structure Using 2D Convolutional Neural Network Model Learned Impedance Responses of Capsule-like Smart Aggregate Sensor. Sensors. 2024; 24(20):6652. https://doi.org/10.3390/s24206652
Chicago/Turabian StyleTa, Quoc-Bao, Ngoc-Lan Pham, and Jeong-Tae Kim. 2024. "Integrated Estimation of Stress and Damage in Concrete Structure Using 2D Convolutional Neural Network Model Learned Impedance Responses of Capsule-like Smart Aggregate Sensor" Sensors 24, no. 20: 6652. https://doi.org/10.3390/s24206652
APA StyleTa, Q.-B., Pham, N.-L., & Kim, J.-T. (2024). Integrated Estimation of Stress and Damage in Concrete Structure Using 2D Convolutional Neural Network Model Learned Impedance Responses of Capsule-like Smart Aggregate Sensor. Sensors, 24(20), 6652. https://doi.org/10.3390/s24206652