A Review on Photoacoustic Spectroscopy Techniques for Gas Sensing
Abstract
:1. Introduction
2. Principles of PAS Gas Sensors
3. Recent Advances in PAS Gas Sensors
3.1. Acoustic Cell
Optimization
3.2. Acoustic Sensor
3.2.1. Electromechanical Sensors
3.2.2. All-Optical Transducers
3.3. Artificial Intelligence (AI)
4. Applications of PAS Gas Sensors
5. Challenges and Limitations
6. Future Directions and Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Safoury, M.; Dufner, M.; Weber, C.; Schmitt, K.; Pernau, H.-F.; Willing, B.; Wöllenstein, J. Resonant Photoacoustic Gas Monitoring of Combustion Emissions. Proceedings 2018, 2, 962. [Google Scholar] [CrossRef]
- Yun, Y.; Jiang, Q. Multi-component gas photoacoustic detection. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012135. [Google Scholar]
- Tonezzer, M.; Van Duy, L. Gas Sensors. In Encyclopedia of Sensors and Biosensors, 1st ed.; Narayan, R., Ed.; Elsevier: Oxford, UK, 2023; pp. 185–208. [Google Scholar]
- Kar Chowdhury, N.; Kumar Singh, A.; Bhowmik, B. 15—Role of gas sensor an integrated part of e-nose for online monitoring of air grade. In Nanotechnology-Based E-Noses; Gupta, R.K., Nguyen, T.A., Bilal, M., Ahmadi, M., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 377–394. [Google Scholar]
- Sharma, A.K.; Mahajan, A. Chapter 8—Potential applications of chemiresistive gas sensors. In Carbon Nanomaterials and Their Nanocomposite-Based Chemiresistive Gas Sensors; Dhall, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 223–245. [Google Scholar]
- Salehabadi, A.; Enhessari, M.; Ahmad, M.I.; Ismail, N.; Gupta, B.D. (Eds.) Chapter 4—Gas sensors. In Metal Chalcogenide Biosensors; Woodhead Publishing: Sawston, UK, 2023; pp. 59–90. [Google Scholar]
- Shiina, T. Hydrogen gas detection by mini-Raman lidar. In Ionizing Radiation Effects and Applications; InTech: Rijeka, Croatia, 2018; pp. 41–60. [Google Scholar]
- Madagalam, M.; Bartoli, M.; Tagliaferro, A. A Short Overview on Graphene and Graphene-Related Materials for Electrochemical Gas Sensing. Materials 2024, 17, 303. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, C.; Liang, C.; Liu, Y.; Li, H.; Zhang, C.; Duan, X.; Pan, Y. Sensitive Materials Used in Surface Acoustic Wave Gas Sensors for Detecting Sulfur-Containing Compounds. Polymers 2024, 16, 457. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Guo, X.; Liao, X.; Liu, Y.; Cai, C.; Meng, X.; Wei, Z.; Du, G.; Shao, Y.; Nie, S.; et al. Advanced application of triboelectric nanogenerators in gas sensing. Nano Energy 2024, 126, 109672. [Google Scholar] [CrossRef]
- Park, J.; Jung, G.; Shin, W.; Kim, D.; Choi, K.; Shin, H.; Park, M.-K.; Kim, J.-J.; Lee, J.-H. Reliability of FET-type gas sensor with asymmetric air-gap micro-heater structure considering thermoelectric effect. Sens. Actuators B Chem. 2024, 405, 135349. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, T.; Wei, W.; Wong, W.Y.; Zhao, C.; Ni, B.J. Work Function-Guided Electrocatalyst Design. Adv. Mater. 2024, 36, 2401568. [Google Scholar] [CrossRef]
- Ma, Y.; Liang, T.; Qiao, S.; Liu, X.; Lang, Z. Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy. Ultrafast Sci. 2023, 3, 0024. [Google Scholar] [CrossRef]
- Palzer, S. Photoacoustic-Based Gas Sensing: A Review. Sensors 2020, 20, 2745. [Google Scholar] [CrossRef]
- Nie, Q.; Liu, Z.; Cheng, M.; Pei, S.; Yang, D.; Guo, D.; Yang, M. Review on Hollow-Core Fiber Based Multi-Gas Sensing Using Raman Spectroscopy. Photonic Sens. 2024, 14, 240412. [Google Scholar] [CrossRef]
- Li, M.; Tian, M.; Lin, C.; Chen, S.; Feng, Z.; Tan, Y. Microcavity Raman Laser-Based FMCW LiDAR with Enhanced Echo Sensitivity. ACS Photonics 2024, 11, 801–809. [Google Scholar] [CrossRef]
- Qiao, S.; He, Y.; Sun, H.; Patimisco, P.; Sampaolo, A.; Spagnolo, V.; Ma, Y. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. Light Sci. Appl. 2024, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; He, Y.; Zhao, K.; Ji, J.; Li, H.; Bewley, J.M. Development and Testing of NDIR-Based Rapid Greenhouse Gas Detection Device for Dairy Farms. Sustainability 2024, 16, 2131. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, G.; Li, Y.; Cheng, Z.; Jiao, K.; Zhang, B.; Zhang, Z.; Li, Y.; Yan, X.; Ma, W.; et al. Optical feedback noise-immune cavity-enhanced optical heterodyne molecular spectrometry for sub-Doppler-broadened detection of C2H2. Opt. Lett. 2024, 49, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhao, J.; Zhang, X.; Yang, M.; Yu, B.; Ma, Y.; Zhou, S.; Li, J. A CNN-assisted mid-infrared high-sensitivity exhaled ammonia sensor based on cavity ring-down spectroscopy. Sens. Actuators B Chem. 2024, 401, 135071. [Google Scholar] [CrossRef]
- Nitzsche, L.; Goldschmidt, J.; Kiessling, J.; Wolf, S.; Kühnemann, F.; Wöllenstein, J. Tunable dual-comb spectrometer for mid-infrared trace gas analysis from 3 to 4.7 µm. Opt. Express 2021, 29, 25449–25461. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, M.; Ma, G.M.; Song, H.T.; Li, C.R.; Han, X.; Zhang, C. TDLAS-Based Detection of Dissolved Methane in Power Transformer Oil and Field Application. IEEE Sens. J. 2018, 18, 2318–2325. [Google Scholar] [CrossRef]
- Ma, G.-M.; Zhao, S.-J.; Jiang, J.; Song, H.-T.; Li, C.-R.; Luo, Y.-T.; Wu, H. Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum. Sci. Rep. 2017, 7, 14961. [Google Scholar] [CrossRef]
- Xiong, S.; Yin, X.; Wang, Q.; Xia, J.; Chen, Z.; Lei, H.; Yan, X.; Zhu, A.; Qiu, F.; Chen, B. Photoacoustic spectroscopy gas detection technology research progress. Appl. Spectrosc. 2024, 78, 139–158. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, G.; Jiang, Y.; Wang, X.; Long, F.; Cai, T. A sensor based on high-sensitivity multi-pass resonant photoacoustic spectroscopy for detection of hydrogen sulfide. Opt. Laser Technol. 2023, 159, 108884. [Google Scholar] [CrossRef]
- Ilke, M. Design of a Photoacoustic Multigas Sensor for CO2 and CO. Master’s Thesis, University of Strathclyde, Glasgow, UK, 2016. [Google Scholar]
- Wang, Z.; Wang, Q.; Zhang, H.; Borri, S.; Galli, I.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.L.; De Natale, P.; Ren, W. Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range. Photoacoustics 2022, 27, 100387. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, K.; Jin, L.; Liu, R.; Chen, W. Optimization of Photoacoustic Cell for Trace Acetylene Detection in Transformer Oil. Atmosphere 2023, 14, 801. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Wang, H.; Chen, Q.; Li, J. A Fast Resonance Frequency Tracking Method for Photoacoustic Cell Based on the Hybrid Single-Frequency Excitation and FFT. Int. J. Thermophys. 2023, 44, 137. [Google Scholar] [CrossRef]
- Liu, X.; Wu, H.; Dong, L. Methodology and applications of acousto-electric analogy in photoacoustic cell design for trace gas analysis. Photoacoustics 2023, 30, 100475. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Lu, P.; Pan, Y.; Zhong, Y.; Sima, C.; Wu, Q.; Zhang, J.; Cui, L.; Liu, D. All-optical non-resonant photoacoustic spectroscopy for multicomponent gas detection based on aseismic photoacoustic cell. Photoacoustics 2023, 34, 100571. [Google Scholar] [CrossRef]
- Kreuzer, L.B. The physics of signal generation and detection. In Optoacoustic Spectroscopy and Detection; Academic Press: Cambridge, MA, USA, 1977; pp. 1–25. [Google Scholar]
- Davis, N.M.; Francis, D.; Hodgkinson, J.; Tatam, R.P. Compact methane sensor using an integrating sphere and interband cascade laser at 3313 nm. Sens. Actuators B Chem. 2023, 389, 133866. [Google Scholar] [CrossRef]
- Morse, P. Vibration and Sound; Reprinted; McGraw-Hill: New York, NY, USA, 1948. [Google Scholar]
- Stewart, G. Laser and Fiber Optic Gas Absorption Spectroscopy; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef]
- Firebaugh, S.L.; Jensen, K.F.; Schmidt, M.A. Miniaturization and integration of photoacoustic detection. J. Appl. Phys. 2002, 92, 1555–1563. [Google Scholar] [CrossRef]
- Scheichl, S. On the calculation of the transmission line parameters for long tubes using the method of multiple scales. J. Acoust. Soc. Am. 2004, 115, 534–555. [Google Scholar] [CrossRef]
- Bruneau, M. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- COMSOL Multiphysics. Acoustics Module User Guide Version 4.2; User’s Manual; COMSOL, Inc.: Shinagawa City, Japan, 2011. [Google Scholar]
- Chakraborty, A.L.; Roy, A. Wavelength Modulation Spectroscopy. In Modern Techniques of Spectroscopy: Basics, Instrumentation, and Applications; Singh, D.K., Pradhan, M., Materny, A., Eds.; Springer: Singapore, 2021; pp. 321–362. [Google Scholar]
- Patimisco, P.; Sampaolo, A.; Bidaux, Y.; Bismuto, A.; Scott, M.; Jiang, J.; Muller, A.; Faist, J.; Tittel, F.K.; Spagnolo, V. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy. Opt. Express 2016, 24, 25943–25954. [Google Scholar] [CrossRef]
- Hadjiaghaie Vafaie, R.; Hosseinzadeh, G. Using a Photoacoustic Cell for Spectroscopy of Toxic Air Pollutants including CO2, SO2 and NO Gases. Sustainability 2023, 15, 9225. [Google Scholar] [CrossRef]
- Tavakoli, M.; Tavakoli, A.; Taheri, M.; Saghafifar, H. Design, simulation and structural optimization of a longitudinal acoustic resonator for trace gas detection using laser photoacoustic spectroscopy (LPAS). Opt. Laser Technol. 2010, 42, 828–838. [Google Scholar] [CrossRef]
- Lin, H.; Zheng, H.; Montano, B.A.Z.; Wu, H.; Giglio, M.; Sampaolo, A.; Patimisco, P.; Zhu, W.; Zhong, Y.; Dong, L.; et al. Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28 kHz tuning fork. Photoacoustics 2022, 25, 100321. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Fu, L.; Zhang, J.; Lu, P. Open-closed single-tube on-beam tuning-fork-enhanced fiber-optic photoacoustic spectroscopy. Photoacoustics 2024, 39, 100639. [Google Scholar] [CrossRef]
- Dello Russo, S.; Pelini, J.; Lopez Garcia, I.; Canino, M.C.; Roncaglia, A.; Cancio Pastor, P.; Galli, I.; De Natale, P.; Borri, S.; Siciliani de Cumis, M. Dual-tube MEMS-based spectrophone for sub-ppb mid-IR photoacoustic gas detection. Photoacoustics 2024, 40, 100644. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, L.; Wu, H.; Yin, X.; Xiao, L.; Jia, S.; Curl, R.F.; Tittel, F.K. Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis. Chem. Phys. Lett. 2018, 691, 462–472. [Google Scholar] [CrossRef]
- Dello Russo, S.; Giglio, M.; Sampaolo, A.; Patimisco, P.; Menduni, G.; Wu, H.; Dong, L.; Passaro, V.M.N.; Spagnolo, V. Acoustic Coupling between Resonator Tubes in Quartz-Enhanced Photoacoustic Spectrophones Employing a Large Prong Spacing Tuning Fork. Sensors 2019, 19, 4109. [Google Scholar] [CrossRef]
- Cai, Y.; Arsad, N.; Li, M.; Wang, Y. Buffer structure optimization of the photoacoustic cell for trace gas detection. Optoelectron. Lett. 2013, 9, 233–237. [Google Scholar] [CrossRef]
- Zeninari, V.; Kapitanov, V.; Courtois, D.; Ponomarev, Y.N. Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection. Infrared Phys. Technol. 1999, 40, 1–23. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, K.; Guo, M.; Li, C.; Xu, L.; Wang, N.; Zhao, X. Miniature 3D-printed resonant photoacoustic cell for flowing gas detection. Sens. Actuators A Phys. 2022, 341, 113594. [Google Scholar] [CrossRef]
- Zhu, Y.; Guan, Y.; Jiang, X.; Wu, G.; Gong, Z.; Wang, X.; Tao, P.; Peng, W.; Yu, Q.; Mei, L. A dual-resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell. Microw. Opt. Technol. Lett. 2024, 66, e34213. [Google Scholar] [CrossRef]
- Wu, G.; Wu, X.; Gong, Z.; Xing, J.; Fan, Y.; Ma, J.; Peng, W.; Yu, Q.; Mei, L. Highly sensitive trace gas detection based on a miniaturized 3D-printed Y-type resonant photoacoustic cell. Opt. Express 2023, 31, 34213–34223. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhang, Y.; Gong, Z.; Fan, Y.; Xing, J.; Wu, X.; Ma, J.; Peng, W.; Yu, Q.; Mei, L. A mini-resonant photoacoustic sensor based on a sphere-cylinder coupled acoustic resonator for high-sensitivity trace gas sensing. Photoacoustics 2024, 37, 100595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Jiang, J.; Zhang, X.; Jia, Y.; Zhu, X.; Shi, Y. Low-frequency Resonant Photoacoustic Gas Sensor by Employing Hollow Core Fiber-Based O-Shaped Multipass Cells. Anal. Chem. 2023, 95, 12811–12818. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, S.; Zhu, Z.; Wang, J.; Zou, X.; Zhang, C.; Liu, Q. High sensitivity and ultra-low concentration range photoacoustic spectroscopy based on trapezoid compound ellipsoid resonant photoacoustic cell and partial least square. Photoacoustics 2024, 35, 100583. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, B.; Liu, S.; Jin, F.; Guo, M.; Chen, Y.; Yu, Q. Highly sensitive photoacoustic gas sensor based on multiple reflections on the cell wall. Sens. Actuators A Phys. 2019, 290, 119–124. [Google Scholar] [CrossRef]
- Mao, X.; Ye, H.; Tan, Y.; Yuan, T.; Peng, Y.; Fang, R. High sensitivity miniaturized multi-pass absorption enhanced differential Helmholtz photoacoustic gas sensor. Infrared Phys. Technol. 2024, 137, 105142. [Google Scholar] [CrossRef]
- Lima, G.R.; Pelais, A.; Neto, A.G.; Coutinho, M.F.; Esquef, I.A.; Batista, A.G.T.; da Silva, M.G.; Sthel, M.S.; de Castro, M.P.P.; Mota, L. Acoustic modeling and performance evaluation of 3D-printed and metal differential photoacoustic sensors for trace gas detection. Measurement 2024, 229, 114422. [Google Scholar] [CrossRef]
- Gong, Z.; Gao, T.; Mei, L.; Chen, K.; Chen, Y.; Zhang, B.; Peng, W.; Yu, Q. Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser. Photoacoustics 2021, 21, 100216. [Google Scholar] [CrossRef]
- Bijnen, F.G.C.; Reuss, J.; Harren, F. Geometrical Optimization of a Longitudinal Resonant Photoacoustic Cell for Sensitive and Fast Trace Gas Detection. Rev. Sci. Instrum. 1996, 67, 2914–2923. [Google Scholar] [CrossRef]
- Wolff, M.; Kost, B.; Baumann, B. Shape-optimized photoacoustic cell: Numerical consolidation and experimental confirmation. Int. J. Thermophys. 2012, 33, 1953–1959. [Google Scholar] [CrossRef]
- Kost, B.; Baumann, B.; Germer, M.; Wolff, M.; Rosenkranz, M. Numerical shape optimization of photoacoustic resonators. Appl. Phys. B 2011, 102, 87–93. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, S.; He, Y.; Ma, Y. Trace gas sensor based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell and a power amplified diode laser. Opt. Express 2024, 32, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, H.; Zhao, X.; Gao, M.; Cheng, K.; Shao, X.; Wu, H.; Dong, L.; Yin, X. Trace photoacoustic SO2 gas sensor in SF6 utilizing a 266 nm UV laser and an acousto-optic power stabilizer. Opt. Express 2023, 31, 6974–6981. [Google Scholar] [CrossRef] [PubMed]
- Besson, J.-P.; Schilt, S.; Thévenaz, L. Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 3449–3456. [Google Scholar] [CrossRef] [PubMed]
- Elia, A.; Di Franco, C.; Lugarà, P.M.; Scamarcio, G. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection. Sensors 2006, 6, 1411–1419. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, H.; Wang, H.; Wang, X.; Guo, M.; Peng, W.; Chen, K. Dense Multibutterfly Spots-Enhanced Miniaturized Optical Fiber Photoacoustic Gas Sensor. Anal. Chem. 2024, 96, 5554–5559. [Google Scholar] [CrossRef]
- Yin, X.; Gao, M.; Miao, R.; Zhang, L.; Zhang, X.; Liu, L.; Shao, X.; Tittel, F. Near-infrared laser photoacoustic gas sensor for simultaneous detection of CO and H2S. Opt. Express 2021, 29, 34258–34268. [Google Scholar] [CrossRef]
- Petra, N.; Zweck, J.; Minkoff, S.E.; Kosterev, A.A.; Doty, J.H. Modeling and Design Optimization of a Resonant Optothermoacoustic Trace Gas Sensor. SIAM J. Appl. Math. 2011, 71, 309–332. [Google Scholar] [CrossRef]
- Li, T.; Sima, C.; Ai, Y.; Tong, C.; Zhao, J.; Zhao, Z.; Lu, P. Photoacoustic spectroscopy-based ppb-level multi-gas sensor using symmetric multi-resonant cavity photoacoustic cell. Photoacoustics 2023, 32, 100526. [Google Scholar] [CrossRef]
- Xiao, H.; Zhao, J.; Sima, C.; Lu, P.; Long, Y.; Ai, Y.; Zhang, W.; Pan, Y.; Zhang, J.; Liu, D. Ultra-sensitive ppb-level methane detection based on NIR all-optical photoacoustic spectroscopy by using differential fiber-optic microphones with gold-chromium composite nanomembrane. Photoacoustics 2022, 26, 100353. [Google Scholar] [CrossRef]
- Huang, Q.; Wei, Y.; Li, J. Simultaneous detection of multiple gases using multi-resonance photoacoustic spectroscopy. Sens. Actuators B Chem. 2022, 369, 132234. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H. Tunable fiber laser based photoacoustic gas sensor for early fire detection. Infrared Phys. Technol. 2014, 65, 1–4. [Google Scholar] [CrossRef]
- Er, Z.; Gong, P.; Zhou, J.; Chang, Y.; Ju, Y.; Xie, L. Multi-gas sensing system based on miniaturized cruciform photoacoustic cell. Opt. Lasers Eng. 2024, 181, 108394. [Google Scholar] [CrossRef]
- Kreuzer, L.B. Ultralow Gas Concentration Infrared Absorption Spectroscopy. J. Appl. Phys. 1971, 42, 2934–2943. [Google Scholar] [CrossRef]
- Kreuzer, L.B.; Kenyon, N.D.; Patel, C.K.N. Air Pollution: Sensitive Detection of Ten Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers. Science 1972, 177, 347–349. [Google Scholar] [CrossRef]
- West, G.A.; Barrett, J.J.; Siebert, D.R.; Reddy, K.V. Photoacoustic spectroscopy. Rev. Sci. Instrum. 1983, 54, 797–817. [Google Scholar] [CrossRef]
- Rouxel, J.; Coutard, J.-G.; Gidon, S.; Lartigue, O.; Nicoletti, S.; Parvitte, B.; Vallon, R.; Zéninari, V.; Glière, A. Miniaturized differential Helmholtz resonators for photoacoustic trace gas detection. Sens. Actuators B Chem. 2016, 236, 1104–1110. [Google Scholar] [CrossRef]
- Lhermet, H.; Verdot, T.; Berthelot, A.; Desloges, B.; Souchon, F. First microphones based on an in-plane deflecting micro-diaphragm and piezoresistive nano-gauges. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 249–252. [Google Scholar]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef]
- Patimisco, P.; Sampaolo, A.; Dong, L.; Tittel, F.K.; Spagnolo, V. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev. 2018, 5, 011106. [Google Scholar] [CrossRef]
- Dong, L.; Kosterev, A.A.; Thomazy, D.; Tittel, F.K. QEPAS spectrophones: Design, optimization, and performance. Appl. Phys. B 2010, 100, 627–635. [Google Scholar] [CrossRef]
- Jahjah, M.; Belahsene, S.; Nähle, L.; Fischer, M.; Koeth, J.; Rouillard, Y.; Vicet, A. Quartz enhanced photoacoustic spectroscopy with a 3.38 µm antimonide distributed feedback laser. Opt. Lett. 2012, 37, 2502–2504. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, V.; Patimisco, P.; Borri, S.; Scamarcio, G.; Bernacki, B.E.; Kriesel, J. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation. Opt. Lett. 2012, 37, 4461–4463. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Ba, T.; Triki, M.; Desbrosses, G.; Vicet, A. Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode. Rev. Sci. Instrum. 2015, 86, 023111. [Google Scholar] [CrossRef]
- Liu, K.; Guo, X.; Yi, H.; Chen, W.; Zhang, W.; Gao, X. Off-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2009, 34, 1594–1596. [Google Scholar] [CrossRef]
- Böttger, S.; Köhring, M.; Willer, U.; Schade, W. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs. Appl. Phys. B 2013, 113, 227–232. [Google Scholar] [CrossRef]
- Yi, H.; Liu, K.; Chen, W.; Tan, T.; Wang, L.; Gao, X. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2011, 36, 481–483. [Google Scholar] [CrossRef]
- Liu, K.; Yi, H.; Kosterev, A.A.; Chen, W.; Dong, L.; Wang, L.; Tan, T.; Zhang, W.; Tittel, F.K.; Gao, X. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation. Rev. Sci. Instrum. 2010, 81, 103103. [Google Scholar] [CrossRef]
- Borri, S.; Patimisco, P.; Sampaolo, A.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; Scamarcio, G.; Spagnolo, V. Terahertz quartz enhanced photo-acoustic sensor. Appl. Phys. Lett. 2013, 103, 021105. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Wang, Q.; Borri, S.; Galli, I.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.L.; De Natale, P.; Ren, W. Parts-per-billion-level detection of hydrogen sulfide based on doubly resonant photoacoustic spectroscopy with line-locking. Photoacoustics 2023, 29, 100436. [Google Scholar] [CrossRef]
- Ma, Y. Recent Advances in QEPAS and QEPTS Based Trace Gas Sensing: A Review. Front. Phys. 2020, 8, 268. [Google Scholar] [CrossRef]
- Coutu, R.A.; Medvedev, I.R.; Petkie, D.T. Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy. Sensors 2016, 16, 251. [Google Scholar] [CrossRef] [PubMed]
- Laurila, T.; Cattaneo, H.; Pöyhönen, T.; Koskinen, V.; Kauppinen, J.; Hernberg, R. Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser. Appl. Phys. B 2006, 83, 285–288. [Google Scholar] [CrossRef]
- Fonsen, J.; Koskinen, V.; Roth, K.; Kauppinen, J. Dual cantilever enhanced photoacoustic detector with pulsed broadband IR-source. Vib. Spectrosc. 2009, 50, 214–217. [Google Scholar] [CrossRef]
- Moser, H.; Lendl, B. Cantilever-enhanced photoacoustic detection of hydrogen sulfide (H2S) using NIR telecom laser sources near 1.6 μm. Appl. Phys. B 2016, 122, 83. [Google Scholar] [CrossRef]
- Kuusela, T.; Peura, J.; Matveev, B.A.; Remennyy, M.A.; Stus, N.M. Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs. Vib. Spectrosc. 2009, 51, 289–293. [Google Scholar] [CrossRef]
- Hirschmann, C.B.; Lehtinen, J.; Uotila, J.; Ojala, S.; Keiski, R.L. Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source. Appl. Phys. B 2013, 111, 603–610. [Google Scholar] [CrossRef]
- McNaghten, E.D.; Grant, K.A.; Parkes, A.M.; Martin, P.A. Simultaneous detection of trace gases using multiplexed tunable diode lasers and a photoacoustic cell containing a cantilever microphone. Appl. Phys. B 2012, 107, 861–871. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, X.; Bian, C.; Cheng, J.; Chen, Z.; Zhang, Y.; Tang, J.; Xiao, S. Photoacoustic spectroscopy: Trace CO detection by using 10 mW near-infrared laser and cantilever beam. AIP Adv. 2020, 10, 105122. [Google Scholar] [CrossRef]
- Gong, Z.; Chen, K.; Yang, Y.; Zhou, X.; Peng, W.; Yu, Q. High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection. Sens. Actuators B Chem. 2017, 247, 290–295. [Google Scholar] [CrossRef]
- Gong, Z.; Chen, K.; Yang, Y.; Zhou, X.; Yu, Q. Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor. Sens. Actuators B Chem. 2018, 260, 357–363. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, C.; Jin, W.; Yang, F.; Ho, H.L.; Ma, J. Optical Fiber Photoacoustic Gas Sensor With Graphene Nano-Mechanical Resonator as the Acoustic Detector. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 199–209. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, K.; Chen, Y.; Yang, B.; Guo, M.; Deng, H.; Ma, F.; Zhu, F.; Gong, Z.; Peng, W.; et al. High-sensitivity photoacoustic gas detector by employing multi-pass cell and fiber-optic microphone. Opt. Express 2020, 28, 6618–6630. [Google Scholar] [CrossRef] [PubMed]
- Lauwers, T.; Glière, A.; Basrour, S. An all-Optical Photoacoustic Sensor for the Detection of Trace Gas. Sensors 2020, 20, 3967. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Lu, P.; Sima, C.; Zhao, J.; Pan, Y.; Li, T.; Zhang, X.; Liu, D. Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones. Photoacoustics 2022, 27, 100382. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Zhou, X.; Gong, Z.; Yu, Q. An all-optical photoacoustic spectrometer for multi-gas analysis. Sens. Actuators B Chem. 2016, 232, 251–256. [Google Scholar] [CrossRef]
- Li, C.; Guo, M.; Zhang, B.; Li, C.; Yang, B.; Chen, K. Miniature single-fiber photoacoustic sensor for methane gas leakage detection. Opt. Lasers Eng. 2022, 149, 106792. [Google Scholar] [CrossRef]
- Chen, K.; Yu, Z.; Gong, Z.; Yu, Q. Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer. Opt. Lett. 2018, 43, 5038–5041. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, B.; Guo, M.; Deng, H.; Yang, B.; Gong, Z.; Peng, W.; Yu, Q. All-Optical Photoacoustic Multigas Analyzer Using Digital Fiber-Optic Acoustic Detector. IEEE Trans. Instrum. Meas. 2020, 69, 8486–8493. [Google Scholar] [CrossRef]
- Guo, M.; Chen, K.; Li, C.; Xu, L.; Zhang, G.; Wang, N.; Li, C.; Ma, F.; Gong, Z.; Yu, Q. High-Sensitivity Silicon Cantilever-Enhanced Photoacoustic Spectroscopy Analyzer with Low Gas Consumption. Anal. Chem. 2022, 94, 1151–1157. [Google Scholar] [CrossRef]
- Zhou, S.; Iannuzzi, D. A fiber-tip photoacoustic sensor for in situ trace gas detection. Rev. Sci. Instrum. 2019, 90, 023102. [Google Scholar] [CrossRef]
- Zhou, S.; Slaman, M.; Iannuzzi, D. Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor. Opt. Express 2017, 25, 17541–17548. [Google Scholar] [CrossRef] [PubMed]
- Lukic, M.; Cojbasic, Z.; Markushev, D. Artificial Intelligence Application in Photoacoustic of Gases. Facta Univ. Ser. Work. Living Environ. Prot. 2023, 20, 31–44. [Google Scholar] [CrossRef]
- Kozmin, A.; Erushin, E.; Miroshnichenko, I.; Kostyukova, N.; Boyko, A.; Redyuk, A. Wavelet-Based Machine Learning Algorithms for Photoacoustic Gas Sensing. Optics 2024, 5, 207–222. [Google Scholar] [CrossRef]
- Li, L.; Tang, L.; Han, F.; Wang, S.; Gao, Y.; Qiao, Y.; Shan, C. Enhanced Sensitivity of CO Photoacoustic Sensors Using Empirical Mode Decomposition Denoising Algorithm. IEEE Photonics J. 2022, 14, 5326207. [Google Scholar] [CrossRef]
- Wang, L.; Lv, H.; Zhao, Y.; Wang, C.; Luo, H.; Lin, H.; Xie, J.; Zhu, W.; Zhong, Y.; Liu, B.; et al. Sub-ppb level HCN photoacoustic sensor employing dual-tube resonator enhanced clamp-type tuning fork and U-net neural network noise filter. Photoacoustics 2024, 38, 100629. [Google Scholar] [CrossRef]
- Lukić, M.; Ćojbašić, Ž.; Markushev, D. Machine learning based determination of photoacoustic signal parameters for different gas mixtures. In Proceedings of the Book of Abstracts, ICPPP21-International Conference on Photoacoustic and Photothermal Phenomena, Bled, Slovenia, 19–24 June 2022; pp. 365–366. [Google Scholar]
- Lukić, M.; Ćojbašić, Ž.; Markushev, D.D. Trace gases analysis in pulsed photoacoustics based on swarm intelligence optimization. Opt. Quantum Electron. 2022, 54, 674. [Google Scholar] [CrossRef]
- Lukić, M.; Ćojbašić, Ž.; Rabasović, M.D.; Markushev, D.D.; Todorović, D.M. Neural Networks-Based Real-Time Determination of the Laser Beam Spatial Profile and Vibrational-to-Translational Relaxation Time Within Pulsed Photoacoustics. Int. J. Thermophys. 2013, 34, 1795–1802. [Google Scholar] [CrossRef]
- Lukić, M.; Ćojbašić, Ž.; Rabasović, M.D.; Markushev, D.D.; Todorović, D.M. Genetic Algorithms Application for the Photoacoustic Signal Temporal Shape Analysis and Energy Density Spatial Distribution Calculation. Int. J. Thermophys. 2013, 34, 1466–1472. [Google Scholar] [CrossRef]
- Rabasović, M.D.; Nikolić, J.D.; Markushev, D.D. Pulsed photoacoustic system calibration for highly excited molecules: II. Influence of the laser beam profile and the excitation energy decay. Meas. Sci. Technol. 2006, 17, 2938. [Google Scholar] [CrossRef]
- Rabasović, M.D.; Nikolić, J.D.; Markushev, D.D. Simultaneous determination of the spatial profile of the laser beam and vibrational-to-translational relaxation time by pulsed photoacoustics. Appl. Phys. B 2007, 88, 309–315. [Google Scholar] [CrossRef]
- Si, G.; Wang, Y.; Liu, X.; Sun, C.; Xu, H.; Li, Z. Highly sensitive photoacoustic gas sensor based on near-concentric cavity. Opt. Express 2024, 32, 22759–22770. [Google Scholar] [CrossRef]
- Wang, F.; Wu, J.; Cheng, Y.; Fu, L.; Zhang, J.; Wang, Q. Simultaneous detection of greenhouse gases CH4 and CO2 based on a dual differential photoacoustic spectroscopy system. Opt. Express 2023, 31, 33898–33913. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Gas concentration monitoring techniques by using an infrared photo-acoustic multi-gas analyser and low-cost devices in an open dairy barn. J. Anim. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Liu, L.; Huan, H.; Zhang, X.; Zhang, L.; Zhan, J.; Jiang, S.; Yin, X.; Chen, B.; Shao, X.; Xu, X.; et al. Wavelength-modulated photoacoustic spectroscopic instrumentation system for multiple greenhouse gas detection and in-field application in the Qinling mountainous region of China. Photoacoustics 2024, 38, 100620. [Google Scholar] [CrossRef] [PubMed]
- Dunker, T.; Ferber, A.M.; Sagberg, H.; Bakke, K.A.H. Critical review of potential technologies for a wearable benzene sensor system. Sens. Actuators Rep. 2024, 8, 100210. [Google Scholar] [CrossRef]
- Li, C.; Han, X.; Ma, F.; Zhao, X.; Wang, Z.; Qi, H.; Guo, M.; Chen, K. Multiplexed fiber-optic photoacoustic sensors for simultaneous detection of multi-point gases. Sens. Actuators B Chem. 2024, 399, 134801. [Google Scholar] [CrossRef]
- Itaoka, K.; Saito, A.; Sasaki, K. Public perception on hydrogen infrastructure in Japan: Influence of rollout of commercial fuel cell vehicles. Int. J. Hydrogen Energy 2017, 42, 7290–7296. [Google Scholar] [CrossRef]
- Anish, T.; Ian, T. High-Purity Gases Have a Key Role in LED Manufacturing. 2012. Available online: http://www.linde-gas.com.ve/en/images/High%20Purity%20Gases%20Have%20Key%20Role%20in%20LED%20Manufacturing_tcm304-179270.pdf (accessed on 3 July 2024).
- Shaalan, N.M.; Ahmed, F.; Saber, O.; Kumar, S. Gases in food production and monitoring: Recent advances in target chemiresistive gas sensors. Chemosensors 2022, 10, 338. [Google Scholar] [CrossRef]
- Pereira, P.F.; de Sousa Picciani, P.H.; Calado, V.; Tonon, R.V. Electrical gas sensors for meat freshness assessment and quality monitoring: A review. Trends Food Sci. Technol. 2021, 118, 36–44. [Google Scholar] [CrossRef]
- Chen, K.; Guo, M.; Yang, B.; Jin, F.; Wang, G.; Ma, F.; Li, C.; Zhang, B.; Deng, H.; Gong, Z. Highly Sensitive Optical Fiber Photoacoustic Sensor for In Situ Detection of Dissolved Gas in Oil. IEEE Trans. Instrum. Meas. 2021, 70, 7005808. [Google Scholar] [CrossRef]
- Nebiker, P.W.; Pleisch, R.E. Photoacoustic gas detection for fire warning. Fire Saf. J. 2001, 36, 173–180. [Google Scholar] [CrossRef]
- Pushkarsky, M.; Webber, M.; Baghdassarian, O.; Narasimhan, L.; Patel, C.K.N. Laser-based photoacoustic ammonia sensors for industrial applications. Appl. Phys. B 2002, 75, 391–396. [Google Scholar] [CrossRef]
- Kaur, K.; Singh, R.; Kaur, G. A Comparative Study of Ethylene Detection Methods in Fruit Supply Chains: A Review. Food Anal. Methods 2024, 17, 14–32. [Google Scholar] [CrossRef]
- Wu, G.; Xing, J.; Gong, Z.; Ma, J.; Fan, Y.; Wu, X.; Peng, W.; Yu, Q.; Mei, L. Single fiber-type double cavity enhanced photoacoustic spectroscopy sensor for trace methane sensing. J. Light. Technol. 2024, 42, 3393–3398. [Google Scholar] [CrossRef]
- Nidheesh, V.R.; Mohapatra, A.K.; Kartha, V.B.; Chidangil, S. Multiwavelength Photoacoustic Breath Analysis Sensor for the Diagnosis of Lung Diseases: COPD and Asthma. ACS Sens. 2023, 8, 4111–4120. [Google Scholar] [CrossRef]
- Luo, H.; Yang, Z.; Zhuang, R.; Lv, H.; Wang, C.; Lin, H.; Zhang, D.; Zhu, W.; Zhong, Y.; Cao, Y.; et al. Ppbv-level mid-infrared photoacoustic sensor for mouth alcohol test after consuming lychee fruits. Photoacoustics 2023, 33, 100559. [Google Scholar] [CrossRef]
- Zheng, K.; Zhang, L.; Leng, S.; Xi, Z.; Zheng, C.; Wang, Y.; Tittel, F.K. An exhaled breath gas sensor system for near-infrared ammonia measurement and kidney diagnostics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 321, 124625. [Google Scholar] [CrossRef]
- Lay-Ekuakille, A.; Vendramin, G.; Trotta, A. LED-based sensing system for biomedical gas monitoring: Design and experimentation of a photoacoustic chamber. Sens. Actuators B Chem. 2009, 135, 411–419. [Google Scholar] [CrossRef]
- Hu, Q.; Ai, Y.; Sima, C.; Sun, Y.; Feng, Z.; Li, T.; Tong, C.; Cao, X.; Wang, W.; Fan, R.; et al. High-Precision Low-Cost Mid-Infrared Photoacoustic Gas Sensor Using Aspherical Beam Shaping for Rapidly Measuring Greenhouse Gases. Photonics 2024, 11, 590. [Google Scholar] [CrossRef]
- Fort, A.; Mugnaini, M.; Panzardi, E.; Vignoli, V. Toward a compact low-cost electronic interface for photoacoustic based gas sensors. In Proceedings of the 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024; pp. 1–6. [Google Scholar]
- Bozóki, Z.; Pogány, A.; Szabó, G. Photoacoustic Instruments for Practical Applications: Present, Potentials, and Future Challenges. Appl. Spectrosc. Rev. 2011, 46, 1–37. [Google Scholar] [CrossRef]
- Zifarelli, A.; Cantatore, A.F.P.; Sampaolo, A.; Mueller, M.; Rueck, T.; Hoelzl, C.; Rossmadl, H.; Patimisco, P.; Spagnolo, V. Multivariate analysis and digital twin modelling: Alternative approaches to evaluate molecular relaxation in photoacoustic spectroscopy. Photoacoustics 2023, 33, 100564. [Google Scholar] [CrossRef] [PubMed]
- Sampaolo, A.; Csutak, S.; Patimisco, P.; Giglio, M.; Menduni, G.; Passaro, V.; Tittel, F.K.; Deffenbaugh, M.; Spagnolo, V. Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser. Sens. Actuators B Chem. 2019, 282, 952–960. [Google Scholar] [CrossRef]
- Giglio, M.; Zifarelli, A.; Sampaolo, A.; Menduni, G.; Elefante, A.; Blanchard, R.; Pfluegl, C.; Witinski, M.F.; Vakhshoori, D.; Wu, H.; et al. Broadband detection of methane and nitrous oxide using a distributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing. Photoacoustics 2020, 17, 100159. [Google Scholar] [CrossRef]
- Zifarelli, A.; Giglio, M.; Menduni, G.; Sampaolo, A.; Patimisco, P.; Passaro, V.M.N.; Wu, H.; Dong, L.; Spagnolo, V. Partial Least-Squares Regression as a Tool to Retrieve Gas Concentrations in Mixtures Detected Using Quartz-Enhanced Photoacoustic Spectroscopy. Anal. Chem. 2020, 92, 11035–11043. [Google Scholar] [CrossRef]
- Menduni, G.; Zifarelli, A.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Amoroso, N.; Wu, H.; Dong, L.; Bellotti, R.; Spagnolo, V. High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition. Photoacoustics 2022, 26, 100349. [Google Scholar] [CrossRef]
- Rück, T.; Müller, M.; Jobst, S.; Weigl, S.; Pangerl, J.; Bierl, R.; Matysik, F.-M. Digital Twin of a photoacoustic trace gas sensor for monitoring methane in complex gas compositions. Sens. Actuators B Chem. 2023, 378, 133119. [Google Scholar] [CrossRef]
- Glière, A.; Rouxel, J.; Brun, M.; Parvitte, B.; Zéninari, V.; Nicoletti, S. Challenges in the Design and Fabrication of a Lab-on-a-Chip Photoacoustic Gas Sensor. Sensors 2014, 14, 957–974. [Google Scholar] [CrossRef]
- Twomey, C.F.; Biagi, G.; Ruth, A.A.; Giglio, M.; Spagnolo, V.; O’Faolain, L.; Walsh, A.J. Evanescent wave quartz-enhanced photoacoustic spectroscopy employing a side-polished fiber for methane sensing. Photoacoustics 2024, 36, 100586. [Google Scholar] [CrossRef]
- Chao, S.; Runze, H.; Niansong, L.; Jianjun, D. Mixed Gas Detection and Temperature Compensation Based on Photoacoustic Spectroscopy. IEEE Photonics J. 2024, 16, 6801010. [Google Scholar] [CrossRef]
- Afshar, B.H.; Digonnet, M.J. Self-Aligning Optical MEMS Acoustic Sensors With nPa/√ Hz Resolution. IEEE Sens. J. 2024, 24, 12066–12073. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, Y.; Zhao, B.; Zhu, X.; Shi, Y. Highly sensitive photoacoustic gas sensor with micro-embedded acoustic resonator for gas leakage detection. Opt. Lett. 2023, 48, 4201–4204. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Guo, M.; Qi, H.; Zhao, X.; Chen, K. Differential Cantilever Enhanced Fiber-Optic Photoacoustic Sensor for Diffusion Gas Detection. Anal. Chem. 2024, 96, 4562–4569. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, Z.; Sun, H.; Hu, M.; Yeung, P.T.; Nie, Q.; Liu, S.; Akikusa, N.; Ren, W. Highly sensitive QEPAS sensor for sub-ppb N2O detection using a compact butterfly-packaged quantum cascade laser. Appl. Phys. B 2023, 130, 6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijesinghe, D.R.; Zobair, M.A.; Esmaeelpour, M. A Review on Photoacoustic Spectroscopy Techniques for Gas Sensing. Sensors 2024, 24, 6577. https://doi.org/10.3390/s24206577
Wijesinghe DR, Zobair MA, Esmaeelpour M. A Review on Photoacoustic Spectroscopy Techniques for Gas Sensing. Sensors. 2024; 24(20):6577. https://doi.org/10.3390/s24206577
Chicago/Turabian StyleWijesinghe, Dakshith Ruvin, Md Abu Zobair, and Mina Esmaeelpour. 2024. "A Review on Photoacoustic Spectroscopy Techniques for Gas Sensing" Sensors 24, no. 20: 6577. https://doi.org/10.3390/s24206577
APA StyleWijesinghe, D. R., Zobair, M. A., & Esmaeelpour, M. (2024). A Review on Photoacoustic Spectroscopy Techniques for Gas Sensing. Sensors, 24(20), 6577. https://doi.org/10.3390/s24206577