Surface-Plasmon-Resonance Amplification of FMD Detection through Dendrimer Conjugation
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef]
- Brown, C.C.; Piccone, M.E.; Mason, P.W.; McKenna, T.S.; Grubman, M.J. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J. Virol. 1996, 70, 5638–5641. [Google Scholar] [CrossRef] [PubMed]
- Algammal, A.M.; Hetta, H.F.; Batiha, G.E.; Hozzein, W.N.; El Kazzaz, W.M.; Hashem, H.R.; Tawfik, A.M.; El-Tarabili, R.M. Virulence-determinants and antibiotic-resistance genes of MDR-E. coli isolated from secondary infections following FMD-outbreak in cattle. Sci. Rep. 2020, 10, 19779. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.L.; Yong, C.Y.; Ong, H.K.; Ho, K.L.; Tan, W.S. Advances in the Diagnosis of Foot-and-Mouth Disease. Front. Vet. Sci. 2020, 21, 477. [Google Scholar] [CrossRef] [PubMed]
- Liedberg, B.; Nylander, C.; Lundström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, G.; Yan, Z.; Wang, J.; Tang, C.; Liu, F.; Zhu, M. Silicon Ultraviolet High-Q Plasmon Induced Transparency for Slow Light and Ultrahigh Sensitivity Sensing. J. Light. Technol. 2023, 42, 406–413. [Google Scholar] [CrossRef]
- Chang, C.-C. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. Biosensors 2021, 11, 233. [Google Scholar] [CrossRef]
- Lee, S.-R.; Park, Y.; Park, J.-W. Kinetic and thermodynamic studies of cinnamycin specific-adsorption on PE-Included-Membranes using surface plasmon resonance. J. Biotechnol. 2020, 320, 77–79. [Google Scholar] [CrossRef]
- Clavijo, A.; Wright, P.; Kitching, P. Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease. Vet. J. 2004, 167, 9–22. [Google Scholar] [CrossRef]
- Sun, Y.; Song, D.; Bai, Y.; Wang, L.; Tian, Y.; Zhang, H. Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers. Anal. Chim. Acta 2008, 624, 294–300. [Google Scholar] [CrossRef]
- Popov, A.; Lisyte, V.; Kausaite-Minkstimiene, A.; Bernotiene, E.; Ramanaviciene, A. Experimental Evaluation of Quantum Dots and Antibodies Conjugation by Surface Plasmon Resonance Spectroscopy. Int. J. Mol. Sci. 2022, 23, 12626. [Google Scholar] [CrossRef] [PubMed]
- Omar, N.A.S.; Fen, Y.W.; Saleviter, S.; Daniyal, W.M.E.M.M.; Anas, N.A.A.; Ramdzan, N.S.M.; Roshidi, M.D.A. Development of a Graphene-Based Surface Plasmon Resonance Optical Sensor Chip for Potential Biomedical Application. Materials 2019, 12, 1928. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.S.; Park, J.-W. Interactions of Cinnamycin-Immobilized Gold Nanorods with Biomimetic Membranes. J. Membr. Biol. 2020, 253, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Park, D.K.; Leo, S.-Y.; Jiang, P. Excellent physical durability and enhanced Fano absorption of SPR sensor platform based on Au-covered silica sphere monolayer. Korean J. Chem. Eng. 2023, 40, 1540–1547. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef]
- Li, G.; Shen, L.; Luo, Y.; Zhang, S. The effect of silver-PAMAM dendrimer nanocomposites on the performance of PVDF membranes. Desalination 2014, 338, 115–120. [Google Scholar] [CrossRef]
- Hao, X.; Yeh, P.; Qin, Y.; Jiang, Y.; Qiu, Z.; Li, S.; Le, T.; Cao, X. Aptamer surface functionalization of microfluidic devices using dendrimers as multi-handled templates and its application in sensitive detections of foodborne pathogenic bacteria. Anal. Chim. Acta 2019, 1056, 96–107. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, X.; Zhang, J.; Cao, X. Developing a non-fouling hybrid microfluidic device for applications in circulating tumour cell detections. Colloids Surf. B Biointerfaces 2017, 151, 39–46. [Google Scholar] [CrossRef]
- Bi, J.A.; Li, Y.C.; Zhuang, Q.F.; Leng, Z.H.; Jia, H.Y.; Liu, Y.; Zhou, J.W.; Du, L.B. Hydroxy-terminated Poly(amidoamine) Dendrimers as Nanocarriers for the Delivery of Antioxidants. J. Nano Res. 2013, 23, 66–73. [Google Scholar] [CrossRef]
- Tanaka, Y.; Naka, K. A carbonate controlled-addition method for size-controlled calcium carbonate spheres by carboxylic acid-terminated poly(amidoamine) dendrimers. Polym. J. 2010, 42, 676–683. [Google Scholar] [CrossRef]
- Biswal, B.K.; Kavitha, M.; Verma, R.S.; Prasad, E. Tumor cell imaging using the intrinsic emission from PAMAM dendrimer: A case study with HeLa cells. Cytotechnology 2009, 61, 17. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kwon, Y.-E.; Guim, H.; Jeong, K.J. Low generational cystamine core PAMAM derivatives modified with nuclear localization signal derived from lactoferrin as a gene carrier. Korean J. Chem. Eng. 2023, 40, 379–389. [Google Scholar] [CrossRef]
- Şenel, M.; Nergiz, C.; Çevik, E. Novel reagentless glucose biosensor based on ferrocene cored asymmetric PAMAM dendrimers. Sens. Actuators B Chem. 2013, 176, 299–306. [Google Scholar] [CrossRef]
- Jiang, Y.; Zou, S.; Cao, X. A simple dendrimer-aptamer based microfluidic platform for E. coli O157: H7 detection and signal intensification by rolling circle amplification. Sens. Actuators B Chem. 2017, 251, 976–984. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Yin, W. SiO2–poly(amidoamine) dendrimer inorganic/organic hybrids. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 1443–1449. [Google Scholar] [CrossRef]
- Hedden, R.C.; Bauer, B.J.; Smith, A.P.; Gröhn, F.; Amis, E. Templating of inorganic nanoparticles by PAMAM/PEG dendrimer–star polymers. Polymer 2002, 43, 5473–5481. [Google Scholar] [CrossRef]
- Qi, R.; Li, Y.-Z.; Chen, C.; Cao, Y.-N.; Yu, M.-M.; Xu, L.; He, B.; Jie, X.; Shen, W.-W.; Wang, Y.-N.; et al. G5-PEG PAMAM dendrimer incorporating nanostructured lipid carriers enhance oral bioavailability and plasma lipid-lowering effect of probucol. J. Control. Release 2015, 210, 160–168. [Google Scholar] [CrossRef]
- Elancheziyan, M.; Senthilkumar, S. Covalent immobilization and enhanced electrical wiring of hemoglobin using gold nanoparticles encapsulated PAMAM dendrimer for electrochemical sensing of hydrogen peroxide. Appl. Surf. Sci. 2019, 495, 143540. [Google Scholar] [CrossRef]
- De Mattei, C.R.; Huang, B.; Tomalia, D.A. Design Dendrimer Syntheses by Self-Assembly of Single-Site, ssDNA Functionalized Dendrons. Nano Lett. 2004, 4, 771–777. [Google Scholar] [CrossRef]
- Bruno, J.G.; Carrillo, M.P.; Phillips, T. Development of DNA Aptamers to a Foot-and-Mouth Disease Peptide for Competitive FRET-Based Detection. J. Biomol. Technol. 2008, 19, 109–115. [Google Scholar]
- Narmani, A.; Mohammadnejad, J.; Yavari, K. Synthesis and evaluation of polyethylene glycol- and folic acid-conjugated polyamidoamine G4 dendrimer as nanocarrier. J. Drug Deliv. Sci. Technol. 2019, 50, 278–286. [Google Scholar] [CrossRef]
- Stenberg, E.; Persson, B.; Roos, H.; Urbaniczky, C.J. Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 1991, 143, 513–526. [Google Scholar] [CrossRef]
- Tokarczyk, K.; Jachimska, B. Quantitative interpretation of PAMAM dendrimers adsorption on silica surface. J. Colloid Interface Sci. 2017, 503, 56–94. [Google Scholar] [CrossRef] [PubMed]
- Daghestani, H.N.; Day, B.W. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 2010, 10, 9630–9646. [Google Scholar] [CrossRef] [PubMed]
- ICH Expert Working Group. Validation of Analytical Procedures: Text and Methodology Q2(R1). In Proceedings of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Chicago, IL, USA, 9 November 2005; Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 9 November 2005).
- Zhong, Y.; Hu, X.-G.; Liu, A.-L.; Lei, Y. Ultrasensitive amperometric determination of hand, foot and mouth disease based on gold nanoflower modified microelectrode. Anal. Chim. Acta 2023, 1252, 341034. [Google Scholar] [CrossRef]
- Dang, T.V.; Kim, M.I. Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications. Korean J. Chem. Eng. 2023, 40, 302–310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.J.; Park, J.-W. Surface-Plasmon-Resonance Amplification of FMD Detection through Dendrimer Conjugation. Sensors 2024, 24, 579. https://doi.org/10.3390/s24020579
Jung SJ, Park J-W. Surface-Plasmon-Resonance Amplification of FMD Detection through Dendrimer Conjugation. Sensors. 2024; 24(2):579. https://doi.org/10.3390/s24020579
Chicago/Turabian StyleJung, Seung Jun, and Jin-Won Park. 2024. "Surface-Plasmon-Resonance Amplification of FMD Detection through Dendrimer Conjugation" Sensors 24, no. 2: 579. https://doi.org/10.3390/s24020579
APA StyleJung, S. J., & Park, J.-W. (2024). Surface-Plasmon-Resonance Amplification of FMD Detection through Dendrimer Conjugation. Sensors, 24(2), 579. https://doi.org/10.3390/s24020579