Application of the Five-Step Phase-Shifting Method in Reflective Ghost Imaging for Efficient Phase Reconstruction
Abstract
1. Introduction
2. Model and Theory
3. Numerical Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Han, S. Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction. Phys. Rev. Lett. 2004, 92, 093903. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J. Transfer functions in lensless ghost-imaging systems. Phys. Rev. A 2008, 78, 043823. [Google Scholar] [CrossRef]
- Shapiro, J.H. Computational ghost imaging. Phys. Rev. A 2008, 78, 061802. [Google Scholar] [CrossRef]
- Katkovnik, V.; Astola, J. Compressive sensing computational ghost imaging. JOSA A 2012, 29, 1556–1567. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Ye, Z.; Xiong, J.; Liu, H.c. Computational ghost imaging encryption with a pattern compression from 3D to 0D. Opt. Express 2022, 30, 21866–21875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cao, J.; Zhou, D.; Cui, H.; Cheng, Y.; Hao, Q. Three-dimensional computational ghost imaging using a dynamic virtual projection unit generated by Risley prisms. Opt. Express 2022, 30, 39152–39161. [Google Scholar] [CrossRef] [PubMed]
- Aβmann, M.; Bayer, M. Compressive adaptive computational ghost imaging. Sci. Rep. 2013, 3, 1545. [Google Scholar] [CrossRef]
- Ferri, F.; Magatti, D.; Lugiato, L.; Gatti, A. Differential ghost imaging. Phys. Rev. Lett. 2010, 104, 253603. [Google Scholar] [CrossRef]
- Fukatsu, S. Differential ghost imaging in time domain. Appl. Phys. Lett. 2017, 111, 061106. [Google Scholar] [CrossRef]
- Li, M.F.; Zhang, Y.R.; Luo, K.H.; Wu, L.A.; Fan, H. Time-correspondence differential ghost imaging. Phys. Rev. A 2013, 87, 033813. [Google Scholar] [CrossRef]
- Khamoushi, S.M.; Nosrati, Y.; Tavassoli, S.H. Sinusoidal ghost imaging. Opt. Lett. 2015, 40, 3452–3455. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, Y.; Yang, Z.; Liu, X. Positive–negative corresponding normalized ghost imaging based on an adaptive threshold. Laser Phys. Lett. 2016, 13, 115202. [Google Scholar] [CrossRef]
- Zhao, S.M.; Zhuang, P. Correspondence normalized ghost imaging on compressive sensing. Chin. Phys. B 2014, 23, 054203. [Google Scholar] [CrossRef]
- Sun, B.; Welsh, S.S.; Edgar, M.P.; Shapiro, J.H.; Padgett, M.J. Normalized ghost imaging. Opt. Express 2012, 20, 16892–16901. [Google Scholar] [CrossRef]
- Hu, C.; Zhu, R.; Yu, H.; Han, S. Correspondence Fourier-transform ghost imaging. Phys. Rev. A 2021, 103, 043717. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, Q.; Shen, X.; Liu, Y.; Liu, H.; Cheng, J.; Han, S. Lensless Fourier-transform ghost imaging with classical incoherent light. Phys. Rev. A 2007, 75, 021803. [Google Scholar] [CrossRef]
- Bai, Y.; Han, S. Ghost imaging with thermal light by third-order correlation. Phys. Rev. A 2007, 76, 043828. [Google Scholar] [CrossRef]
- Bai, Y.F.; Yang, W.X.; Yu, X.Q. Noise analysis in ghost imaging from the perspective of coherent-mode representation. Chin. Phys. B 2012, 21, 044206. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Zhang, D.; Wang, H. MR-DCAE: Manifold regularization-based deep convolutional autoencoder for unauthorized broadcasting identification. Int. J. Intell. Syst. 2021, 36, 7204–7238. [Google Scholar] [CrossRef]
- Rizvi, S.; Cao, J.; Zhang, K.; Hao, Q. DeepGhost: Real-time computational ghost imaging via deep learning. Sci. Rep. 2020, 10, 11400. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Wang, H.; Li, G.; Situ, G. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt. Express 2019, 27, 25560–25572. [Google Scholar] [CrossRef]
- Walter, D.; Pitsch, C.; Bürsing, H. Quantum ghost imaging for remote sensing. In Optical Sensors; Optica Publishing Group: Washington, DC, USA, 2023; p. SM3D-5. [Google Scholar] [CrossRef]
- Jiang, T.; Bai, Y.; Tan, W.; Zhu, X.; Huang, X.; Nan, S.; Fu, X. Ghost imaging lidar system for remote imaging. Opt. Express 2023, 31, 15107–15117. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.H.; Luo, H.X. Dual color images watermarking scheme with geometric correction based on quaternion FrOOFMMs and LS-SVR. Opt. Laser Technol. 2023, 167, 109665. [Google Scholar] [CrossRef]
- Shi, M.; Cao, J.; Cui, H.; Zhou, C.; Zhao, T. Advances in Ghost Imaging of Moving Targets: A Review. Biomimetics 2023, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.K.; Wei, N.; Li, Y.X.; Yang, Y.; Wang, S.F. Multi-party interactive cryptographic key distribution protocol over a public network based on computational ghost imaging. Opt. Lasers Eng. 2022, 155, 107067. [Google Scholar] [CrossRef]
- Kang, Y.; Kanwal, S.; Pu, S.; Liu, B.; Zhang, D. Ghost imaging-based optical multilevel authentication scheme using visual cryptography. Opt. Commun. 2023, 526, 128896. [Google Scholar] [CrossRef]
- Borghi, R.; Gori, F.; Santarsiero, M. Phase and Amplitude Retrieval in Ghost Diffraction from Field-Correlation Measurements. Phys. Rev. Lett. 2006, 96, 183901. [Google Scholar] [CrossRef] [PubMed]
- Ying, G.; Wei, Q.; Shen, X.; Han, S. A two-step phase-retrieval method in Fourier-transform ghost imaging. Opt. Commun. 2008, 281, 5130–5132. [Google Scholar] [CrossRef]
- Gong, W.; Han, S. Phase-retrieval ghost imaging of complex-valued objects. Phys. Rev. A 2010, 82, 023828. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, Q.; Shen, X.; Liu, Y.; Liu, H.; Bai, Y.; Han, S. Sub-wavelength Fourier-transform imaging of a pure-phase object with thermal light. Phys. Lett. A 2007, 366, 569–574. [Google Scholar] [CrossRef]
- Shirai, T.; Setälä, T.; Friberg, A.T. Ghost imaging of phase objects with classical incoherent light. Phys. Rev. A 2011, 84, 041801. [Google Scholar] [CrossRef]
- Clemente, P.; Durán, V.; Tajahuerce, E.; Torres-Company, V.; Lancis, J. Single-pixel digital ghost holography. Phys. Rev. A 2012, 86, 041803. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, J.; Wu, H. Phase Retrieval Based on Shaped Incoherent Sources. Sensors 2023, 23, 9405. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, Y.; He, Y.; Li, X.; Sun, B. Quantitative imaging for optical field via a single-pixel detector. Signal Process. 2021, 188, 108173. [Google Scholar] [CrossRef]
- Liansheng, S.; Yin, C.; Bing, L.; Ailing, T.; Asundi, A.K. Optical image encryption via high-quality computational ghost imaging using iterative phase retrieval. Laser Phys. Lett. 2018, 15, 075204. [Google Scholar] [CrossRef]
- Liansheng, S.; Yin, C.; Zhanmin, W.; Ailing, T.; Asundi, A.K. Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm. Opt. Lasers Eng. 2018, 111, 108–113. [Google Scholar] [CrossRef]
- Lu, D.; Liao, M.; He, W.; Xing, Q.; Verma, G.; Peng, X. Experimental optical secret sharing via an iterative phase retrieval algorithm. Opt. Lasers Eng. 2020, 126, 105904. [Google Scholar] [CrossRef]
- Sephton, B.; Nape, I.; Moodley, C.; Francis, J.; Forbes, A. Revealing the embedded phase in single-pixel quantum ghost imaging. Optica 2023, 10, 286–291. [Google Scholar] [CrossRef]
- Meyers, R.; Deacon, K.S.; Shih, Y. Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A 2008, 77, 041801. [Google Scholar] [CrossRef]
- Basano, L.; Ottonello, P. Diffuse-reflection ghost imaging from a double-strip illuminated by pseudo-thermal light. Opt. Commun. 2010, 283, 2657–2661. [Google Scholar] [CrossRef]
- Bisht, N.S.; Sharma, E.K.; Kandpal, H. Experimental observation of lensless ghost imaging by measuring reflected photons. Opt. Lasers Eng. 2010, 48, 671–675. [Google Scholar] [CrossRef]
- Hardy, N.D.; Shapiro, J.H. Ghost imaging in reflection: Resolution, contrast, and signal-to-noise ratio. In Proceedings of the Quantum Communications and Quantum Imaging VIII, San Diego, CA, USA, 1–5 August 2010; Meyers, R.E., Shih, Y., Deacon, K.S., Eds.; International Society for Optics and Photonics: Okinawa, Japan, 2010; Volume 7815, p. 78150L. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, D.; Bai, Y.; Chen, B. Ghost imaging for a reflected object with a rough surface. Phys. Rev. A 2010, 82, 063814. [Google Scholar] [CrossRef]
- Luo, C.; Cheng, J. Reflective ghost diffraction for objects with rough surfaces. J. Opt. Soc. Am. A 2013, 30, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cheng, J.; Xu, H. Phase distribution reconstruction in reflective ghost diffraction. J. Opt. 2019, 21, 075604. [Google Scholar] [CrossRef]
- Nan, S.; Bai, Y.; Shi, X.; Shen, Q.; Li, H.; Qu, L.; Fu, X. Ghost Imaging for a Reflected Object with Large Incident Angles. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Gong, W. Correlated imaging for a reflective target with a smooth or rough surface. J. Opt. 2016, 18, 085702. [Google Scholar] [CrossRef]
- Testorf, M.; Hennelly, B.; Ojeda-Castañeda, J. Phase-Space Optics: Fundamentals and Applications; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Wang, Q.; Cheng, M.; Jiang, Y.; Zuo, W.; Buja, G. A simple active and reactive power control for applications of single-phase electric springs. IEEE Trans. Ind. Electron. 2018, 65, 6291–6300. [Google Scholar] [CrossRef]
- Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Phase-modulation based dual-function radar-communications. IET Radar Sonar Navig. 2016, 10, 1411–1421. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L.; Guo, S.; Zhang, L.; Gao, F.; Jia, M.; Zhou, Z. Enhanced phase retrieval via deep concatenation networks for in-line X-ray phase contrast imaging. Phys. Medica 2022, 95, 41–49. [Google Scholar] [CrossRef]
- Zhang, D.J.; Tang, Q.; Wu, T.F.; Qiu, H.C.; Xu, D.Q.; Li, H.G.; Wang, H.B.; Xiong, J.; Wang, K. Lensless ghost imaging of a phase object with pseudo-thermal light. Appl. Phys. Lett. 2014, 104, 121113. [Google Scholar] [CrossRef]
- Singh, R.K.; Vinu, R.; Chen, Z.; Pu, J. Quantitative phase recovery in ghost imaging. In Proceedings of the 2021 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 18–21 October 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Roberts and Company Publishers: Englewood, NJ, USA, 2007. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics. Goodman; McGraw-Hill: Columbus, OH, USA, 1968. [Google Scholar]
- Goodman, J.W. Statistical Optics; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hardy, N.D. Analyzing and Improving Image Quality in Reflective Ghost Imaging; Technical report; Massachusetts Institute of Technology: Cambridge, MA, USA, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Cheng, J.; Wu, H. Application of the Five-Step Phase-Shifting Method in Reflective Ghost Imaging for Efficient Phase Reconstruction. Sensors 2024, 24, 320. https://doi.org/10.3390/s24020320
Chen Z, Cheng J, Wu H. Application of the Five-Step Phase-Shifting Method in Reflective Ghost Imaging for Efficient Phase Reconstruction. Sensors. 2024; 24(2):320. https://doi.org/10.3390/s24020320
Chicago/Turabian StyleChen, Ziyan, Jing Cheng, and Heng Wu. 2024. "Application of the Five-Step Phase-Shifting Method in Reflective Ghost Imaging for Efficient Phase Reconstruction" Sensors 24, no. 2: 320. https://doi.org/10.3390/s24020320
APA StyleChen, Z., Cheng, J., & Wu, H. (2024). Application of the Five-Step Phase-Shifting Method in Reflective Ghost Imaging for Efficient Phase Reconstruction. Sensors, 24(2), 320. https://doi.org/10.3390/s24020320