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Abstract: The conventional approach to phase reconstruction in Reflective Ghost Imaging (RGI)
typically involves the introduction of three reference screens into the reference path, deeming the
Fourier transform step indispensable. However, this method introduces complexity to the system
and raises concerns regarding potential errors in phase retrieval. In response to these challenges, we
advocate for adopting the Five-Step Phase-Shifting (FSPS) method in the RGI system. This method
presents two key advantages over traditional approaches: (1) It streamlines the phase reconstruction
process by eliminating the requirement for a Fourier inverse transform. (2) It avoids the need to
insert objects into the reference optical path, simplifying the computation of reference optical path
intensity and enabling seamless application to Computational Ghost Imaging (CGI), overcoming
the constraints of Dual-Arm Ghost Imaging (DAGI). We substantiate the theoretical proposition
through numerical simulations involving two intricate objects. Furthermore, our discussion delves
into exploring the influence of varying reflective angles on the phase reconstruction performance.

Keywords: Reflective Ghost Imaging; phase reconstruction; Five-Step Phase-Shifting (FSPS) method;
signal processing

1. Introduction

Ghost Imaging (GI) has garnered substantial attention in recent years due to its
nonlocal probing and single-pixel detecting properties. It reconstructs the image of an
unknown object by measuring the intensity correlation between test and reference path
detectors [1–18]. Recent years have witnessed significant advancements in signal process-
ing through the application of deep learning techniques [19]. These methods leverage
the capabilities of neural networks to comprehend intricate patterns and relationships,
providing a potent tool for further enhancing the capabilities of ghost imaging across
various applications [20,21]. On the one hand, GI technology excels in low-light imaging,
demonstrating proficiency in producing clear images from weak light signals. This capabil-
ity lends itself to a wide range of applications, including remote sensing [22,23], watermark
technology [24], medical imaging [25], and cryptography [26,27]. On the other hand, GI can
handle not only transmissive objects [1,16,28–39] but also reflective ones [40–48]. Numerous
reports indicate the successful reconstruction of both amplitude and phase distribution of
transmissive objects [16,28–39] in Transmissive Ghost Imaging (TGI).

Obtaining phase information about objects is crucial in various fields, especially in
optics [49], electronics [50], communications [51], medicine [52], and other scientific and
engineering domains. For instance, in medicine, phase information plays a vital role in
various imaging techniques, including magnetic resonance imaging and optical coherence
tomography. Analyzing the phase information allows doctors to gain insights into tissue
structures, vascular distribution, and abnormalities for diagnosis and treatment planning.
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The commonly employed GI technique is used to determine the reflectivity of a re-
flective object, but it leaves the phase distribution of the reflection coefficient unknown. In
recent years, efforts have been made to reconstruct the phase distribution information in
Reflective Ghost Imaging (RGI) [46]. In [46], Chen successfully reconstructed the reflected
object’s phase distribution by inserting reference screens into the reference path and em-
ploying the Three-Step Phase-Shifting (TSPS) method. However, the inclusion of a Fourier
transform step in this method is necessary for reconstructing phase information, potentially
introducing a phase retrieval error. Moreover, the incorporation of a reference screen in the
reference arm restricts the applicability of this approach to computational ghost imaging
(CGI) [3–7] and confines its use to Dual-Arm Ghost Imaging (DAGI) applications.

In a recent contribution, Chen introduced an innovative approach that utilizes the Five-
Step Phase-Shifting (FSPS) method for reconstructing the phase distribution of a complex
transmissive object in TGI [34]. This method offers distinct advantages by eliminating
the need for iterative algorithms [35–37], a complex GI system [30,53], entangled photon
pairs [39], or Fourier transform steps [28,29,33,46,54]. Additionally, the FSPS method
transcends the limitations of DAGI and can be seamlessly applied to CGI.

Building upon these advancements, we spontaneously embarked on exploring the
potential application of the novel FSPS method to RGI for obtaining the phase distribution
of reflective objects. While the FSPS method was initially proposed in the context of
scenarios involving TGI, our detailed theoretical derivations focused on RGI scenarios,
revealing its direct applicability to enhance phase reconstruction in RGI.

In this paper, we take the initial step of providing a detailed theoretical derivation of
the FSPS method in RGI. It is worth noting that, although we utilize a DAGI framework for
clarity, the current framework can be seamlessly adapted for CGI as long as the reference
arm contains no objects. Subsequently, we investigate the impact of various incident and
reflective angles on this phase reconstruction method through numerical simulations. Our
deliberate selection of the most suitable incident and reflective angles aims to showcase
the robustness and efficiency of the proposed phase retrieval approach. In summary, our
work bridges the gap between the FSPS method initially proposed for TGI and its direct
application to enhance phase reconstruction in RGI. The adaptability of the FSPS method
and its robust performance in diverse scenarios highlight its potential as a valuable tool in
advancing RGI techniques.

2. Model and Theory

We present our generalized Reflective Ghost Imaging (RGI) scheme in Figure 1. No-
tably, it closely resembles the conventional RGI system. The classical source undergoes
division into two beams facilitated by the beam splitter (BS). Subsequently, these two
beams traverse distinct paths: the reference path and the test path. Within the test path,
an unknown reflective object is introduced, with d2 denoting the distance from the ob-
ject to the test detector Dt, and d1 representing the distance from the source to the object.
Simultaneously, the reference path remains unaffected by the object and incorporates a high-
resolution sensor Dr. The distance between the source and the detector Dr is designated
as d0.

Theoretically, the reflective object can be described by the speckle model, with its
random surface height assumed to follow Gaussian statistics. As discussed in Refs. [44,55],
the relationship between the reflected fields Eo at the surface of the object and the incident
field Ei is expressed as follows:

Eo(u) = Ei(u)r(u) exp(jϕ(u)). (1)

Here, r(u) represents the reflection coefficient of the object, and ϕ(u) signifies the
phase delay proportional to the random surface height of the object h(u):

ϕ(u) = k(−⃗i · n⃗ + o⃗ · n⃗)h(u) (2)
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where k represents the wave number of the incident light, and the dot product o⃗ · n⃗ is the
cosine of the angle between the unit vectors o⃗ and n⃗.

Figure 1. Geometry of our generalized RGI system: The source field Es(x) undergoes beam splitting
by the non-polarized BS, where x, u, xt, and xr denote the positions at the source plane, unknown
object plane, test detector plane, and reference detector plane, respectively. n⃗, i⃗, and o⃗ represent unit
vectors pointing in the direction of the average surface normal, incident light, and the detection plane,
respectively. θi and θo are the incident angle and the reflective angle, respectively. Dt and Dr denote
the detectors in the test and reference paths, respectively. The term “correlator” refers to any device
capable of processing signals, such as a computer.

Using Equation (1), the field Et(xt) at the test detector Dt can be calculated as [56]

Et(xt) =
−1

λ
√

d1d2

∫
dudx1Es(x1)r(u) exp[iϕ(u)]

× exp
[
− iπ

λd1
(x1 − u cos θi)

2
]

× exp
[
− iπ

λd2
(u cos θo − xt)

2
]

(3)

where θi and θo represent the incident angle and reflective angle, respectively. Similarly, we
obtain the field Er(xr) as follows:

Er(xr) =
1√
iλd0

∫
dx2Es(x2) exp

[
− iπ

λd0
(x2 − xr)

2
]

. (4)

Combined with classical optical coherent theory [56] and the notations in [44], and con-
sidering that a complex circular Gaussian random process can model the field fluctuations
of a classical light source with zero mean [57], we have

⟨Es(x1)E∗
s (x′1)Es(x2)E∗

s (x′2)⟩ = ⟨Es(x1)E∗
s (x′2)⟩⟨E∗

s (x′1)Es(x2)⟩
+⟨Es(x1)E∗

s (x′1)⟩⟨Es(x2)E∗
s (x′2)⟩ (5)

where ⟨⟩ denotes the ensemble average, the correlation of intensity fluctuations between
the test and reference detectors can be calculated as follows:
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G(xt, xr) = ⟨Er(xr)E∗
r (xr)Et(xt)E∗

t (xt)⟩ − ⟨Et(xt)E∗
t (xt)⟩⟨Er(xr)E∗

r (xr)⟩

=
1

λ3d0d1d2

∫
dudu

′⟨r(u)r∗(u′
) exp[iϕ(u)− iϕ(u

′
)]⟩

×
∫

dx1dx
′
1dx2dx

′
2⟨E∗

s (x
′
1)Es(x2)⟩⟨E∗

s (x
′
2)Es(x1)⟩ (6)

× exp
{

iπ
λd1

[(x
′
1 − u

′
cos θi)

2 − (x1 − u cos θi)
2]

}
⟩

× exp
{

iπ
λd2

[(u
′
cos θo − xt)

2 − (u cos θo − xt)
2]

}
× exp

{
iπ

λd0
[(x

′
2 − xr)

2 − (x2 − xr)
2]

}
.

In TGI, only one stochastic fluctuation originates from the source field. However,
in RGI, the scenario is more intricate as it involves two independent types of stochastic
fluctuations: one from the source and the other from the object itself [46]. Let us define the
stochastic fluctuation from the object as R(u, u′) = ⟨r(u)r∗(u′) exp[iϕ(u)− iϕ(u′)]⟩, and it is
independent of the source fluctuation. Mathematically, R(u, u′) = r(u)r∗(u′) exp{−σ2

ϕ[1 −
exp(−(u − u′)2/ℓ2

c )]} [58], where r(u) represents the reflection coefficient of the object, ℓc
is the surface correlation length, and σ2

ϕ is the variance of the phase related to the variance
of the surface height σ2

h ,

σ2
ϕ = [k(−⃗i · n⃗ + o⃗ · n⃗)]σ2

h . (7)

Suppose the source is entirely incoherent; we have

⟨E∗
s (x

′
2)Es(x1)⟩ = f (x1)rect

(
x1

se

)
δ(x1 − x

′
2)

⟨E∗
s (x

′
1)Es(x2)⟩ = f (x2)rect

(
x2

se

)
δ(x2 − x

′
1) (8)

in which f (x1) represents the intensity distribution of the source, rect(x) is the rectangular
function, and se denotes the size of the incoherent source.

In implementing GI, we set d0 = d1, and position a point detector in the test path. The
expression for the GI formula can be articulated as follows:

I(xr) = G(xt = 0, xr)

=
1

λ3d2
0d2

∫
dx1dx2dudu

′
R(u, u

′
) f (x1) f (x2)rect

(
x1

se

)
rect

(
x2

se

)
(9)

× exp
{

iπ
λd0

[(x2 − u
′
cos θi)

2 − (x1 − u cos θi)
2 + (x1 − xr)

2 − (x2 − xr)
2]

}
× exp

[
iπ cos2 θo

λd2
(u

′2 − u2)

]
.

To simplify the formula, we introduce the following symbols:

k0 =
iπ

λd0
, k2 =

iπ cos2 θo

λd2 cos2 θi
, A =

1
λ3d2

0d2
.
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Moreover, we substitute variables with y = u cos θi and y′ = u′ cos θi. Assuming the
incoherent source size is sufficiently large, the formula can be presented as:

I(xr) =
A

cos2 θi

∫
dx1dx2 f (x1) f (x2)

×dydy
′
R(

y
cos θi

,
y
′

cos θi
) exp

[
k2(y

′2 − y2)

]
× exp

{
k0[(x2 − y

′
)2 − (x1 − y)2]

}
× exp

{
k0[(x1 − xr)

2 − (x2 − xr)
2]
}

(10)

=
A

cos2 θi

∫
dydy

′
R(

y
cos θi

,
y
′

cos θi
)

× exp
[
(k0 + k2)(y

′2 − y2)

]
×dx1 f (x1) exp[2k0x1(y − xr)]

×dx2 f (x2) exp
[
2k0x2(xr − y

′
)
]
.

Especially, when ℓc is significantly large, we obtain R(u, u′) = r(u)r∗(u′), resulting in
the GI pattern as:

I(xr) =
A

cos2 θi
|
∫

dy r(
y

cos θi
) exp[−(k0 + k2)y2]dx1 f (x1) exp[2k0x1(y − xr)]|2 (11a)

=
A

cos2 θi

∣∣∣∣∫ dyF(
xr − y
iπ/k0

)r(
y

cos θi
) exp[−(k0 + k2)y2]

∣∣∣∣2
=

A
cos2 θi

∣∣∣∣F( xr

iπ/k0
)⊗

(
r(

xr

cos θi
) exp[−(k0 + k2)x2

r ]

)∣∣∣∣2
=

1
λ3d2

0d2 cos2 θi

∣∣∣∣F( xr

λd0
)⊗

(
r(

xr

cos θi
) exp[− iπ

λ
(

1
d0

+
1
d2

× cos2 θo

cos2 θi
)x2

r ]

)∣∣∣∣2 (11b)

in which ⊗ denotes convolution, and F(.) represents the Fourier transform of f (.). It is
evident that Equation (11b) bears a strong resemblance to Equation (7) introduced in [34],
suggesting that the FSPS method, originally proposed for TGI in [34], could be extended
to RGI.

For simplicity, we substitute the object re(xr) for r
(

xr
cos θi

)
exp

[
− iπ

λ

(
1
d0

+ 1
d2

× cos2 θo
cos2 θi

)
x2

r

]
.

Consequently, we obtain:

re(xr) = r(
xr

cos θi
) exp[− iπ

λ
(

1
d0

+
1
d2

× cos2 θo

cos2 θi
)x2

r ]. (12)

By acquiring the phase and amplitude details of the object re(xr), it becomes evident
that we can subsequently reconstruct the phase and amplitude distributions of r(xr) using
Equation (12).

Utilizing Equation (12), we can represent Equation (11b) as follows:

I(xr) =
1

λ3d2
0d2 cos2 θi

∣∣∣∣F( xr

λd0

)
⊗ re(xr)

∣∣∣∣2. (13)

It is evident that Equation (13) is identical to Equation (9) derived in [34], reinforcing
the idea that the FSPS method proposed in [34] for TGI can be directly applied to RGI. Thus,
with the FSPS method [34], one can directly obtain:
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H(xr) = G1 I1(xr) + G2 I2(xr) + G3 I3(xr) + G4 I4(xr) + G5 I5(xr) (14a)

= re(xr − ελd0)r∗e (xr + ελd0) (14b)

where G1 = (2
√

2−2)(1+i)
2
√

2−4
, G2 = [−2

√
2+i(2

√
2−4)]

2
√

2−4
, G3 = 4

2
√

2−4
, G4 = [−2

√
2−i(2

√
2−4)]

2
√

2−4
, G5 =

(2
√

2−2)(1−i)
2
√

2−4
, and Im(xr) =

1
λ3d2

0d2 cos2 θi
|re(xr) + umre(xr − ελd0) + u∗

mre(xr + ελd0)|2, with

m = 1, 2, 3, 4, 5 and u1 = 1
2 , u2 = 1+i

2
√

2
, u3 = i

2 , u4 = −1+i
2
√

2
, u5 = − 1

2 . Here, ε denotes a real
constant.

Then we have

ΦH(xr) = Φre(xr − ελd0)− Φre(xr + ελd0) (15)

where ΦH(xr) represents the phase of H(xr), and Φre(xr) represents the phase of re(xr),
the quantitative reconstruction of the phase of re(xr) from the phase information of H(xr)
can be achieved using Equation (15). The specific steps are as follows: (1) Assume that the
phase at xr = 0 is zero, i.e., Φre(0) = 0. (2) By applying Equation (15), one can determine
the values of Φre(0), ±Φre(2ελd0), ±Φre(4ελd0), and so forth.

Upon the successful reconstruction of the phase information of re(xr) from the phase
information of H(xr), the phase information of r( xr

cos θi
) can be obtained using Equation (12):

Φr(
xr

cos θi
) = Φre(xr) +

π

λ

(
1
d0

+
1
d2

× cos2 θo

cos2 θi

)
x2

r (16)

The amplitude of re(xr) can be determined using the standard RGI scheme without
the designed shaped source. By applying Equation (12), we can directly infer that the
amplitude of re(xr) is equivalent to the amplitude information of r

(
xr

cos θi

)
. Therefore,∣∣∣∣r( xr

cos θi

)∣∣∣∣ = |re(xr)|. (17)

With Equations (16) and (17), we can ascertain the amplitude and phase of r
(

xr
cos θi

)
.

Subsequently, the phase and amplitude information of r(xr) can be directly reconstructed
from r

(
xr

cos θi

)
through coordinate transformation. Assuming a zero phase at re(xr) = 0

denoted as ϕre(0) = 0, the reconstructed phase exhibits a constant value difference from
the actual phase. Nevertheless, the absolute phase holds little significance, given that the
relative phase distribution remains unchanged.

3. Numerical Simulations

In the subsequent discussions, we verify the effectiveness of our RGI scheme by
employing two types of complex reflective objects: a Reflective Double-Slit (RDS) and a
Reflective Double-Slit Gaussian Phase Plate (RDSGPP). In our simulations, we configure
the transverse size of the source as Ds = 10 mm, the wavelength as λ = 628 nm, and the
distances d1 = 400 mm and d2 = 200 mm. The Charge-Coupled Device (CCD) resolution is
∆xr = 8.3µm, the sample number is M = 320, and ε is specified as 33.041 m−1 . Here, let us
elaborate on why the value of ε is chosen as 33.041 m−1. The reason can be traced back to
Equation (15). The discretized form of Equation (15) is expressed as follows:

ΦH(M∆xr) = Φre(M∆xr − ∆xr)− Φre(M∆xr + ∆xr)

= Φre [(M − 1)∆xr]− Φre [(M + 1)∆xr] (18)

where ∆xr = ελd0, and ∆xr represents the pixel size of the CCD (∆xr = 8.3µm). Addition-
ally, xr must be divisible by ∆xr (i.e., xr/∆xr = M, where M is an integer, and here we set
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M = 320). This discrete representation proves to be more convenient for subsequent signal
processing in our simulated experiments. According to Equation (18), we can extract the
values of Φre from ΦH using a recursive algorithm. Thus, we determine the value of ε as:

ε =
∆xr

λd0
=

8.3µm
628 nm × 400 mm

= 33.041 m−1.

Here, we also outline the steps of our simulation experiment as follows:
1. Perform multidimensional integration on Equation (11a) to calculate the values of

I1(xr), I2(xr), I3(xr), I4(xr), I5(xr), and I0(xr). These values can be determined by setting
the parameter u in the function f (x1) = 1 + uei2πεx1 + u∗e−i2πεx1 [34] to u = 1

2 , u = 1+i
2
√

2
,

u = i
2 , u = −1+i

2
√

2
, u = − 1

2 , and u = 0. Obtaining the value of I0(xr) is crucial for extracting
the amplitude information of the object: setting u to 0 transforms it into a conventional RGI
mode. Taking the square root of I0(xr) yields the amplitude information |re(xr)| of re(xr).

2. Substitute the values of I1(xr), I2(xr), I3(xr), I4(xr), and I5(xr) obtained in the first
step into Equation (14a), resulting in H(xr). Then, obtain the phase value ΦH(xr) from
H(xr). By further applying Equation (18) and using a recursive algorithm, we can extract
the phase values of Φre(xr).

3. Substitute the obtained values of Φre(xr) from the second step into Equation (16),
successfully obtaining the phase information Φr

(
xr

cos θi

)
. Then, applying Equation (17)

along with the amplitude |re(xr)| obtained in the first step yields the value of
∣∣∣r( xr

cos θi

)∣∣∣.
4. Transform the obtained phase values Φr

(
xr

cos θi

)
and amplitude values

∣∣∣r( xr
cos θi

)∣∣∣
using coordinate transformations to obtain the values of Φr(xr) and |r(xr)|. Thus, the
reconstruction of the phase and amplitude of the reflective object is completed.

These steps are further presented in the form of a flowchart in Figure 2.
To investigate the influence of different incident angles θi and reflective angles θo on our

phase retrieval method, we exemplify using the RDSGPP and simulate the reconstructed
results for nine distinct angle combinations presented in Figure 3. The reflection coefficient
of the RDSGPP is defined as:

r1(u) =


ρ1e

− iu2

τ1
2 , if − 2w+d

2 ≤ u ≤ − d
2 ,

ρ2e
− iu2

τ2
2 , if d

2 ≤ u ≤ 2w+d
2 ,

0, other.

Here, w denotes the slit width, and d represents the slit distance, both of which are
set to 210µm and 420µm, respectively. Additionally, ρi signifies the amplitude of the ith
Gaussian plate slit, while τi denotes the width parameter governing the phase distribution
for the ith Gaussian plate slit.

The parameters associated with the RDSGPP, as depicted in Figure 3, are ρ1 = 1,
ρ2 = 0.5, τ1 = 100µm, τ2 = 65µm. In the figure, it is noticeable that when the incident
angle θi is held constant, particularly in cases such as θi = π/4 and θi = 3π/8, the retrieval
results exhibit only minor changes as the reflective angle θo varies between π/8, π/4, and
3π/8, respectively. This observation suggests that the impact of the incident angle θi is
considerably more significant than that of the reflective angle θo. Consequently, careful
consideration is warranted when selecting the value of the incident angle θi. Although we
have simulated only three incident angle cases, the results affirm that satisfactory retrieval
outcomes are achieved when θi = π/4.
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Figure 2. Flowchart of the FSPS Method for RGI: Here, we illustrate the application of an RDSGPP,
generating curves I1(xr), I2(xr), I3(xr), I4(xr), I5(xr), and I0(xr) as depicted in the figure. The specific
parameters for this RDSGPP are {ρ1 = 1, ρ2 = 0.5, τ1 = 100µm, τ2 = 65µm}.

Figure 3. The obtained reflection coefficients for RDSGPPs are presented, considering different
incident angles θi and various reflective angles θo. (a1,a2): With a fixed incident angle of θi = π/8,
the reflective angles θo vary from π/8 to 3π/8 in intervals of π/8. (b1,b2): Maintaining a con-
stant incident angle of θi = π/4, the reflective angles θo span from π/8 to 3π/8 at π/8 intervals.
(c1,c2): With the incident angle held at θi = 3π/8, the reflective angles θo cover the range from π/8
to 3π/8 with intervals of π/8.

Moreover, we note that when θi = π/4, the reconstruction result obtained with
θo = π/4(θo = π/8) surpasses that with θo = 3π/8 in Figure 3. Consequently, in
subsequent simulations, we fix θi = θo = π/4. Additionally, we simulate two other
instances of RDSGPPs to further substantiate the reliability of the RGI phase retrieval
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method. The reconstructed phases and amplitudes of these plates are presented in Figure 4.
The relative difference between the reconstructed phases and the initial phases is also close
to zero, affirming the validity of our RGI phase retrieval scheme.

The second example depicted in Figure 5 is the RDS with the reflection coefficient

r2(u) =


ψ1eiθψ1 − 2w+d

2 ≤ u ≤ − d
2

ψ1eiθψ1 d
2 ≤ u ≤ 2w+d

2
0 other.

Here, ψi and θψi represent the amplitude and phase of the ith slit, respectively. To
demonstrate the reliability of our RGI phase retrieval method, we selected three different
RDSs, and their reconstructed phases and amplitudes are presented in Figure 5. In Figure 5,
it is evident that the solid blue curves, representing the original phase and amplitude,
closely align with the dashed red curves, representing the reconstructed phase and ampli-
tude. This alignment indicates a substantial consistency between the reconstructed and
original phases (amplitudes), providing additional evidence for the reliability of our phase
reconstruction approach.

Finally, we would like to clarify why quantitative evaluation metrics, such as Signal-
to-Noise Ratio (SNR), were not used in assessing the reconstruction results. The evaluation
of SNR traditionally leans towards emphasizing amplitude information, making it a com-
monly used metric. SNR is conventionally computed by dividing the average signal value
by the standard deviation of noise, with amplitude playing a pivotal role in this calculation.
Phase information, on the other hand, is typically utilized to describe signal variations,
periodicity, and relative positions, rather than directly influencing the signal’s intensity.
Consequently, direct incorporation of phase information into SNR calculations is less
prevalent, as phase is not inherently associated with the concept of ‘noise’.

It’s important to underscore that our amplitude reconstruction relies entirely on the
established framework of the most traditional ghost imaging scheme. Additionally, we
want to draw attention to our observation that the double integration function in MATLAB
yielded suboptimal results when applied to integrate Equation (11a). This observation is
manifested in the curve of I0 depicted in Figure 2 (where I0 is derived under the condition
of f (x1) = 1, representing the outcome of the most traditional ghost imaging system).
According to traditional ghost imaging theory, I0 can be regarded as the square of the
object’s amplitude. Ideally, if the double integration function in MATLAB were perfect, the
curve of I0 for each slit in Figure 2 should be parallel to the axis. However, it is evident
that the curves of I0 for each slit in Figure 2 do not align with the axis; instead, they exhibit
significant fluctuations. This discrepancy indicates that the double integration function in
MATLAB is not an ideal fit for simulating Equation (11a). Consequently, the reconstructed
amplitude based on this foundation is also imperfect (e.g., the reconstructed amplitude
in Figure 4 does not perfectly align with the original amplitude information). Similarly,
we can infer that I1, I2, I3, I4, and I5 obtained using this double integration function are
not flawless, resulting in a deviation between the reconstructed phase information and
theoretical values (as evident in simulation results, such as Figure 4).

Despite these challenges, it is crucial to highlight that even though I0, I1, I2, I3, I4,
and I5 obtained using the MATLAB double integration function are not perfect, and the
simulation results (Figures 4 and 5) maintain a high level of persuasiveness. This resilience
indicates that the FSPS method remains a reliable approach.
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Figure 4. The retrieved reflection coefficients of three different RDSGPPs under the condi-
tion of θi = θo = π/4. The original phases and amplitudes are depicted by the solid blue
curves, whereas the reconstructed phases and amplitudes are illustrated by the dashed red
curves. (a1,a2): ρ1 = ρ2 = 1, τ1 = 75µm, τ2 = 125µm. (b1,b2): ρ1 = 1, ρ2 = 0.5, τ1 = τ2 = 70µm.
(c1,c2): ρ1 = 1, ρ2 = 0.5, τ1 = 100µm, τ2 = 65µm.
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Figure 5. The retrieved reflection coefficients of the three different RDSs under the condition of
θi = θo = π/4. The original phases and amplitudes are depicted by the solid blue curves, whereas the
reconstructed phases and amplitudes are illustrated by the dashed red curves. (a1,a2): ψ1 = ψ2 = 1,
θψ1 = 0.8π, θψ2 = 0.5π. (b1,b2): ψ1 = 0.5, ψ2 = 1, θψ1 = θψ2 = 0.8π. (c1,c2): ψ1 = 1, ψ2 = 0.8,
θψ1 = 0.2π, θψ2 = 0.4π.

4. Conclusions

In conclusion, through theoretical derivation and extensive simulations, we have
demonstrated that the FSPS method can be directly applied to RGI for obtaining the phase
distribution of reflecting objects. This method successfully reconstructed the reflection
phases and amplitudes of three complex RDSGPPs and three complicated RDSs. We
have explored different combinations of incident angles θi and reflective angles θo in
simulations to analyze their effects on phase reconstruction performance. The simulation
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results reveal that the incident angle has a significantly greater impact than the reflective
angle on phase retrieval results, emphasizing the importance of carefully choosing the
incident angle. Our scheme exhibits robust performance when the incident angle is set to
θi = π/4. Additionally, under the conditions of θi = π/4, the phase reconstruction result
with θo = 3π/8 is less favorable than with θo = π/4 (θo = π/8), suggesting a preference
for smaller reflective angles (θo ≤ π/4).

Crucially, the FSPS method sets itself apart from commonly used GI phase retrieval
methods by eliminating the necessity for entangled photon pairs, avoiding the need for
complex optical systems, skipping any Fourier transform steps, and foregoing lengthy
iterative processes in its phase retrieval procedure. This distinction marks a departure
from conventional GI phase retrieval methods. Furthermore, the FSPS method proves
successful in acquiring object phase information, whether in TGI [34] or RGI, underscoring
its remarkable versatility. We posit that this method is not only applicable to GI but also
harbors substantial potential in various other phase retrieval applications.
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