Study of a Crosstalk Suppression Scheme Based on Double-Stage Semiconductor Optical Amplifiers
Abstract
:1. Introduction
2. Optimization of Pump Wavelength in Nonlinear SOAs for Crosstalk Suppression
2.1. DFWM Process in Nonlinear SOAs
2.2. SXR Improvement of Four Wavelength Combinations for a Single SOA
3. The Double-Stage SOA Scheme for Crosstalk Suppression
3.1. The Double-Stage SOA Scheme
3.2. Optimal PSPR of SOA1 for QPSK Signals
3.3. The EVM Performance of the Double-Stage SOA Scheme
4. Application of the Double-Stage SOA Scheme to the MDM System with Identical Frequency Crosstalk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puttnam, B.J.; Rademacher, G.; Luís, R.S. Space-Division Multiplexing for Optical Fiber Communications. Optica 2021, 8, 1186–1203. [Google Scholar] [CrossRef]
- Mori, T.; Sakamoto, T.; Wada, M.; Yamamoto, T.; Nakajima, K. Few-Mode Fiber Technology for Mode Division Multiplexing. Opt. Fiber Technol. 2017, 35, 37–45. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, L. Design of an All-Fiber Mode Power Splitter for Mode-Division-Multiplexing Transmission. Appl. Opt. 2021, 60, 8480–8484. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, H.; Huang, Y.; Zhang, Q.; Chen, J.; Fontaine, N.K.; Mazur, M.; Ryf, R.; Song, Y. MIMO Processing With Linear Beat Interference Cancellation for Space Division Multiplexing Self-Homodyne Coherent Transmission. J. Light. Technol. 2022, 40, 4136–4149. [Google Scholar] [CrossRef]
- Poudel, B.; Oshima, J.; Kobayashi, H.; Iwashita, K. MIMO Detection Using a Deep Learning Neural Network in a Mode Division Multiplexing Optical Transmission System. Opt. Commun. 2019, 440, 41–48. [Google Scholar] [CrossRef]
- Patki, P.G.; Guan, P.; Li, L.; Lakoba, T.I.; Oxenløwe, L.K.; Vasilyev, M.; Galili, M. Recent Progress on Optical Regeneration of Wavelength-Division-Multiplexed Data. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 7700812. [Google Scholar] [CrossRef]
- Sobhanan, A.; Anthur, A.; O’Duill, S.; Pelusi, M.; Namiki, S.; Barry, L.; Venkitesh, D.; Agrawal, G.P. Semiconductor Optical Amplifiers: Recent Advances and Applications. Adv. Opt. Photon. 2022, 14, 571–651. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S. Reconfigurable All-Optical Logic Device Based on Cross-Phase Modulation across Highly Non-Linear Fiber. Opt. Fiber Technol. 2023, 81, 103567. [Google Scholar] [CrossRef]
- Bottrill, K.R.H.; Hesketh, G.; Jones, L.; Parmigiani, F.; Richardson, D.J.; Petropoulos, P. Full Quadrature Regeneration of QPSK Signals Using Sequential Phase Sensitive Amplification and Parametric Saturation. Opt. Express 2017, 25, 696–705. [Google Scholar] [CrossRef]
- Cao, Y.; Ziyadi, M.; Mohajerin-Ariaei, A.; Almaiman, A.; Liao, P.; Bao, C.; Alishahi, F.; Falahpour, A.; Shamee, B.; Yang, J.; et al. Reconfigurable Optical Inter-Channel Interference Mitigation for Spectrally Overlapped QPSK Signals Using Nonlinear Wave Mixing in Cascaded PPLN Waveguides. Opt. Lett. 2016, 41, 3233–3236. [Google Scholar] [CrossRef]
- Gopalan, A.; Simon, J.; Hemalatha, T.; Mandhala, V.N.; Neelamegam, N.; Sukumar, B.; Madian, F.K. Comparative Study of Single Pump All Optical Fiber Amplifiers (POAs) with Ultra Wide Band and High Gain Fiber Optic Parametric Amplifiers in Highly Nonlinear Fibers. J. Opt. Commun. 2024. [Google Scholar] [CrossRef]
- Shah, N.S.M.; Matsumoto, M. Analysis and Experiment of All-Optical Time-Interleaved Multi-Channel Regeneration Based on Higher-Order Four-Wave Mixing in a Fiber. Opt. Commun. 2011, 284, 4687–4694. [Google Scholar] [CrossRef]
- Bottrill, K.R.H.; Taengnoi, N.; Liu, H.; Petropoulos, P. Mid-Span Pump Phase Shift Applied to WDM Wavelength Conversion for the Suppression of FWM Crosstalk. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 5–9 March 2023; Optica Publishing Group: San Diego, CA, USA, 2023; p. Th1B.3. [Google Scholar]
- Wen, F.; Geng, Y.; Liao, M.; Wu, B.; Lu, L.; Zhou, L.; Zhou, X.; Qiu, K.; Chen, J. Reducing Crosstalk of Silicon-Based Optical Switch with All-Optical Multi-Wavelength Regenerator. In Proceedings of the Asia Communications and Photonics Conference, Guangzhou, China, 10–13 November 2017; Optica Publishing Group: San Diego, CA, USA, 2017; p. Su2A.91. [Google Scholar]
- Kotb, A.; Zoiros, K.E.; Li, W. 320 Gb/s All-Optical Logic Operations Based on Two-Photon Absorption in Carrier Reservoir Semiconductor Optical Amplifiers. Optik 2022, 265, 169494. [Google Scholar] [CrossRef]
- Ku, Y.C.; Chan, K.; Hung, W.; Chan, C.K.; Chen, L.K.; Tong, F. Homodyne Crosstalk Tolerance Enhancement by All-Active MZI-SOA Wavelength Converters. In Proceedings of the CLEO/Pacific Rim 2003—The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), Taipei, Taiwan, 15–19 December 2003; Volume 1, p. 336. [Google Scholar]
- Zheng, X.; Liu, F.; Wolfson, D.; Kloch, A. Suppression of Interferometric Crosstalk and ASE Noise Using a Polarization Multiplexing Technique and an SOA. IEEE Photonics Technol. Lett. 2000, 12, 1091–1093. [Google Scholar] [CrossRef]
- Amiri, I.S.; Rashed, A.N.Z.; Mohamed, A.E.A.; Aboelazm, M.B.; Yupapin, P. Nonlinear Effects with Semiconductor Optical Amplifiers. J. Opt. Commun. 2023, 44, 11–17. [Google Scholar] [CrossRef]
- Agarwal, V.; Pareek, P.; Gupta, S.; Singh, L.; Balaji, B.; Dakua, P.K. Design and Analysis of Carrier Reservoir SOA Based 2 × 1 MUX with Enable Input and Implementing Basic Logic Gates Using MUX at 120 Gb/s. Opt. Quantum Electron. 2024, 56, 1479. [Google Scholar] [CrossRef]
- Sun, F.; Wen, F.; Wu, B.; Ling, Y.; Qiu, K. Optical Phase Conjugation Conversion through a Nonlinear Bidirectional Semiconductor Optical Amplifier Configuration. Photonics 2022, 9, 164. [Google Scholar] [CrossRef]
- Nosratpour, A.; Razaghi, M.; Darvish, G. Numerical Analysis of Four Wave Mixing in Photonic Crystal Semiconductor Optical Amplifier. Opt. Commun. 2019, 433, 104–110. [Google Scholar] [CrossRef]
- Verma, P.; Singh, S. An Approach to Generate Cross-Polarization Modulation-Enabled Optical Frequency Comb with Enhanced Spectral Flatness in Traveling-Wave Semiconductor Optical Amplifiers. J. Opt. 2024, 26, 105703. [Google Scholar] [CrossRef]
- Kamchevska, V.; Medhin, A.K.; Da Ros, F.; Ye, F.; Asif, R.; Fagertun, A.M.; Ruepp, S.; Berger, M.; Dittmann, L.; Morioka, T.; et al. Experimental Demonstration of Multidimensional Switching Nodes for All-Optical Data Center Networks. J. Light. Technol. 2016, 34, 1837–1843. [Google Scholar] [CrossRef]
- Leon-Saval, S.G.; Fontaine, N.K.; Amezcua-Correa, R. Photonic Lantern as Mode Multiplexer for Multimode Optical Communications. Opt. Fiber Technol. 2017, 35, 46–55. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, Y.; Liu, L.; Wang, J.; Priti, R.; Zhang, G.; Liboiron-Ladouceur, O.; Dai, D. Thermally-Reconfigurable Silicon Photonic Devices and Circuits. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 3600220. [Google Scholar] [CrossRef]
- Tamersit, K.; Moaiyeri, M.H.; Jooq, M.K.Q. Leveraging Negative Capacitance Ferroelectric Materials for Performance Boosting of Sub-10 Nm Graphene Nanoribbon Field-Effect Transistors: A Quantum Simulation Study. Nanotechnology 2022, 33, 465204. [Google Scholar] [CrossRef] [PubMed]
- Jooq, M.K.Q.; Mir, A.; Mirzakuchaki, S.; Farmani, A. Semi-Analytical Modeling of High Performance Nano-Scale Complementary Logic Gates Utilizing Ballistic Carbon Nanotube Transistors. Phys. E Low-Dimens. Syst. Nanostructures 2018, 104, 286–296. [Google Scholar] [CrossRef]
Symbol | Description | Value | Unit |
---|---|---|---|
Lk | Length of the device section | 500 | μm |
wk | Width of the active region | 3 | μm |
dk | Thickness of the active region | 0.08 | μm |
Ik | Current injected to the SOA | 600 | mA |
n2,k | Nonlinear Kerr coefficient | 6.2 × 10−19 | m2/W |
αa | Internal loss coefficient in active region | 4 × 103 | m−1 |
Гk | Optical confinement factor for bulk section | 0.3 | / |
ГNL,k | Nonlinear optical confinement factor | 1 | / |
Aeff,k | Effective mode areas | 10−12 | m2 |
alin,k | Linear gain coefficient | 2.78 × 10−20 | m2 |
ε | Gain suppression factor | 1 × 10−23 | m3 |
αlw | Linewidth enhancement factor | 3 | / |
Ak | Linear carrier recombination coefficient | 1.43 × 10−8 | s−1 |
Bk | Bimolecular carrier recombination coefficient | 10−16 | m3/s |
Ck | Auger carrier recombination coefficient | 3 × 10−41 | m6/s |
N0,k | Carrier density transparency | 1.5 × 1024 | m−3 |
Nch,k | Reference carrier density | 2 × 1024 | m−3 |
Schemes | Modulation Format | Crosstalk Deviation | Wavelength Preservation | Properties |
---|---|---|---|---|
Mid-span pump phase shift in HNLF [13] | QPSK | 0.4 nm | No | Using a programmable filter |
Data-pump FWM-HNLF [14] | RZ | 0.4 nm | No | High input powers |
MZI-SOA [16] | NRZ | homodyne | No | High-precision device |
Gain-saturated SOA [17] | OOK | No available | Yes | Waveform distortion at high power |
Our scheme (double-stage SOAs) | QPSK | 0~0.32 nm | Yes | Phase persevering amplitude regeneration function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Ma, X.; Wu, B. Study of a Crosstalk Suppression Scheme Based on Double-Stage Semiconductor Optical Amplifiers. Sensors 2024, 24, 6403. https://doi.org/10.3390/s24196403
Lu X, Ma X, Wu B. Study of a Crosstalk Suppression Scheme Based on Double-Stage Semiconductor Optical Amplifiers. Sensors. 2024; 24(19):6403. https://doi.org/10.3390/s24196403
Chicago/Turabian StyleLu, Xintong, Xinyu Ma, and Baojian Wu. 2024. "Study of a Crosstalk Suppression Scheme Based on Double-Stage Semiconductor Optical Amplifiers" Sensors 24, no. 19: 6403. https://doi.org/10.3390/s24196403
APA StyleLu, X., Ma, X., & Wu, B. (2024). Study of a Crosstalk Suppression Scheme Based on Double-Stage Semiconductor Optical Amplifiers. Sensors, 24(19), 6403. https://doi.org/10.3390/s24196403