Research on Defect Detection Method of Fusion Reactor Vacuum Chamber Based on Photometric Stereo Vision
Abstract
:1. Introduction
2. Low-Light Image Enhancement Algorithm
2.1. Image Preprocessing and Threshold Segmentation
2.2. Improved Multiscale Retinex Algorithm
3. Defect Reconstruction Based on Photometric Stereo Vision
3.1. Modeling Photometric Stereo Vision
3.2. Light Source Positioning Design
4. Defect Detection Experiments
4.1. Experimental Platform
4.2. Low-Light Image Enhancement Experiment
4.3. Defect Reconstruction Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nooralishahi, P.; Ibarra-Castanedo, C.; Deane, S.; López, F.; Pant, S.; Genest, M.; Avdelidis, N.P.; Maldague, X.P.V. Drone-based non-destructive inspection of industrial sites: A review and case studies. Drones 2021, 5, 106. [Google Scholar] [CrossRef]
- Nash, C.; Karve, P.; Adams, D. Diagnosing nuclear power plant pipe wall thinning due to flow accelerated corrosion using a passive, thermal non-destructive evaluation method: Feasibility assessment via numerical experiments. Nucl. Eng. Des. 2022, 386, 111542. [Google Scholar] [CrossRef]
- Yousaf, T.; Bradley, M. Helium plasma immersion ion implantation studies of tungsten and tungsten heavy alloys for fusion plasma facing components. Radiat. Eff. Defects Solids 2023, 178, 143–159. [Google Scholar] [CrossRef]
- Patel, P.; Vaghela, H.; Muralidhara, S.; Das, J.; Chang, H.-S. Design and performance assessment of cold compressor for a typical cold box of large tokamak machines. Cryogenics 2021, 118, 103331. [Google Scholar] [CrossRef]
- Gliss, C.; Bachmann, C.; Ciattaglia, S.; Drumm, B.; Camacho, M.G.; Moscato, I.; Mull, T.; Palermo, I. Integrated design of tokamak building concepts including ex-vessel maintenance. Fusion Eng. Des. 2022, 177, 113068. [Google Scholar] [CrossRef]
- Qin, G.; Xu, Y.; He, W.; Qi, Q.; Zheng, L.; Hu, H.; Cheng, Y.; Zuo, C.; Zhang, D.; Ji, A. Design and Development of an Air–Land Amphibious Inspection Drone for Fusion Reactor. Drones 2024, 8, 190. [Google Scholar] [CrossRef]
- Shi, S.; Song, Y.; Cheng, Y.; Feng, H.S.; Liu, C.; Villedieu, E.; Bruno, V.; Pastor, P.; Khan, S.U.D.; Tang, H.J.; et al. Design and Implementation of Storage Cask System for EAST Articulated Inspection Arm (AIA) Robot. J. Fusion Energy 2015, 34, 711–716. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Fu, Z. Low-light image enhancement via the absorption light scattering model. IEEE Trans. Image Process. 2019, 28, 5679–5690. [Google Scholar] [CrossRef]
- Feng, X.; Li, J.; Hua, Z. Low-light image enhancement algorithm based on an atmospheric physical model. Multimed. Tools Appl. 2020, 79, 32973–32997. [Google Scholar] [CrossRef]
- Fu, X.; Zeng, D.; Huang, Y.; Liao, Y.; Ding, X.; Paisley, J. A fusion-based enhancing method for weakly illuminated images. Signal Process. 2016, 129, 82–96. [Google Scholar] [CrossRef]
- Rasheed, M.; Guo, G.; Shi, D.; Khan, H.; Cheng, X. An empirical study on retinex methods for low-light image enhancement. Remote Sens. 2022, 14, 4608. [Google Scholar] [CrossRef]
- Wang, X.; Yi, R.; Sun, M.; Zhang, Z. Low-light Image Enhancement Algorithm Based on Improved Multi-scale Retinex with Adaptive Brightness Compensation. In Proceedings of the International Conference on Computer Supported Cooperative Work in Design (CSCWD), Tianjin, China, 8–10 May 2024; pp. 2234–2239. [Google Scholar]
- Li, J.; Hao, S.; Li, T.; Zhuo, L.; Zhang, J. RDMA: Low-light image enhancement based on retinex decomposition and multi-scale adjustment. Int. J. Mach. Learn. Cybern. 2024, 15, 1693–1709. [Google Scholar] [CrossRef]
- Jha, M.; Bhandari, A. NSDIE: Noise Suppressing Dark Image Enhancement Using Multiscale Retinex and Low-Rank Minimization. ACM Trans. Multimed. Comput. Commun. Appl. 2024, 20, 1–22. [Google Scholar] [CrossRef]
- Ibrahim, H.; Kong, N. Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 2007, 53, 1752–1758. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, J.; Hu, H.; Li, B. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 2013, 22, 3538–3548. [Google Scholar] [CrossRef]
- Guo, X.; Hu, Q. Low-light image enhancement via breaking down the darkness. Int. J. Comput. Vis. 2023, 131, 48–66. [Google Scholar] [CrossRef]
- Shuhang, W.; Gang, L. Naturalness preserved image enhancement using a priori multi-layer lightness statistics. IEEE Trans. Image Process. 2018, 27, 938–948. [Google Scholar]
- Wen, S.; Hu, X.; Ma, J.; Sun, F.; Fang, B. Autonomous robot navigation using Retinex algorithm for multiscale image adaptability in low-light environment. Intell. Serv. Robot. 2019, 12, 359–369. [Google Scholar] [CrossRef]
- Zong, Y.; Liang, J.; Wang, H.; Ren, M.; Zhang, M.; Li, W.; Lu, W.; Ye, M. An intelligent and automated 3D surface defect detection system for quantitative 3D estimation and feature classification of material surface defects. Opt. Laser Eng. 2021, 144, 106633. [Google Scholar] [CrossRef]
- Ikehata, S. Scalable, detailed and mask-free universal photometric stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 13198–13207. [Google Scholar]
- Landstrom, A.; Thurley, M. Morphology-Based Crack Detection for Steel Slabs. IEEE J. Sel. Top. Signal Process. 2012, 6, 866–875. [Google Scholar] [CrossRef]
- Ju, Y.; Lam, K.; Xie, W.; Zhou, H.; Dong, J.; Shi, B. Deep Learning Methods for Calibrated Photometric Stereo and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Wu, Z.; Mo, Z.; Duan, D.; Yeung, S.-K.; Tan, P. A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3707–3716. [Google Scholar]
- Zhang, K.; Li, L.; Liu, Q. Dark-field structured illumination microscopy for highly sensitive detection of 3D defects in optical materials. Opt. Laser Eng. 2023, 161, 107340. [Google Scholar] [CrossRef]
- Cao, Y.; Ding, B.; Chen, J.; Liu, W.; Guo, P.; Huang, L.; Yang, J. Photometric-stereo-based defect detection system for metal parts. Sensors 2022, 22, 8374. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Menna, F.; Remondino, F. Combining photogrammetry and photometric stereo to achieve precise and complete 3D reconstruction. Sensors 2022, 22, 8172. [Google Scholar] [CrossRef]
- Meccaf, R.; Wetzlert, A.; Brucksteint, A.M.; Kimmel, R. Near Field Photometric Stereo with Point Light Sources. Siam J. Imaging Sci. 2014, 7, 2732–2770. [Google Scholar] [CrossRef]
- Xie, L.; Song, Z.; Jiao, G.; Huang, X.; Jia, K. A practical means for calibrating an LED based photometric stereo system. Opt. Laser Eng. 2015, 64, 42–50. [Google Scholar] [CrossRef]
- Vazquez, G.; Lacapmesure, A.; Martínez, S.; Martínez, O.E. SUPPOSe 3Dge: A Method for Super-Resolved Detection of Surfaces in Volumetric Fluorescence Microscopy. J. Opt. Photon. Res. 2024, 1–9. [Google Scholar]
- Zhou, W.; Kambhamettu, C. A unified framework for scene illuminant estimation. Image. Vis. Comput. 2008, 26, 415–429. [Google Scholar] [CrossRef]
- Queau, Y.; Durix, B.; Wu, T.; Cremers, D.; Lauze, F.; Durou, J.-D. LED-based Photometric Stereo: Modeling Calibration and Numerical Solution. J. Math. Imaging Vis. 2018, 60, 313–340. [Google Scholar] [CrossRef]
- Takai, T.; Maki, A.; Niinuma, K.; Matsuyama, T. Difference sphere: An approach to near light source estimation. Comput. Vis. Image Underst. 2009, 113, 966–978. [Google Scholar] [CrossRef]
- Xu, S.; Wallace, A.M. Recovering surface reflectance and multiple light locations and intensities from image data. Pattern Recogn. Lett. 2008, 29, 1639–1647. [Google Scholar] [CrossRef]
- Su, Y.; Tang, X.; Cai, Z.; Wu, J.; Chen, Y.; Hua, M.; Wan, W. Performance improvement of projection-type multiview holographic three-dimensional display using spatial light modulators. Opt. Laser Eng. 2020, 129, 106079. [Google Scholar] [CrossRef]
- Al Sobbahi, R.; Tekli, J. Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: Overview, empirical evaluation, and challenges. Signal Process. Image Commun. 2022, 109, 116848. [Google Scholar] [CrossRef]
- Song, Z.; Nie, Y.; Song, Z. Photometric stereo with quasi-point light source. Opt. Laser Eng. 2018, 111, 172–182. [Google Scholar] [CrossRef]
- Tian, X.; Liu, R.; Wang, Z.; Ma, J. High quality 3D reconstruction based on fusion of polarization imaging and binocular stereo vision. Inform. Fusion 2022, 77, 19–28. [Google Scholar] [CrossRef]
- Li, Z.; Ji, S.; Fan, D.; Yan, Z.; Wang, F.; Wang, R. Reconstruction of 3D Information of Buildings from Single-View Images Based on Shadow Information. ISPRS Int. J. Geo-Inf. 2024, 13, 62. [Google Scholar] [CrossRef]
- Jian, Z.; Wang, X.; Zhang, X.; Su, R.; Ren, M.; Zhu, L. Task-Specific Near-Field Photometric Stereo for Measuring Metal Surface Texture. IEEE Trans. Ind. Inform. 2023, 20, 6019–6029. [Google Scholar] [CrossRef]
- Jonasson, E.T.; Boeuf, J.; Kyberd, S.; Skilton, R.; Burroughes, G.; Amayo, P.; Collins, S. Reconstructing JET using LIDAR-Vision fusion. Fusion Eng. Des. 2019, 146, 110952. [Google Scholar] [CrossRef]
- Jonasson, E.T.; Boeuf, J.; Murcutt, P.; Kyberd, S.; Skilton, R. Improved reconstruction of JET using LIDAR-Vision fusion. Fusion Eng. Des. 2020, 161, 112061. [Google Scholar] [CrossRef]
- Niu, L.; Aha, L.; Mattila, J.; Gotchev, A.; Ruiz, E. A stereoscopic eye-in-hand vision system for remote handling in ITER. Fusion Eng. Des. 2019, 146, 1790–1795. [Google Scholar] [CrossRef]
LED Light | X-Axis | Y-Axis | Height | ||
---|---|---|---|---|---|
Light 1 | 10 cm | 20 cm | 60 cm | 0° | 0° |
Light 2 | 10 cm | 20 cm | 60 cm | 30° | 30° |
Light 3 | 40 cm | 20 cm | 35 cm | 30° | 30° |
Light 4 | 40 cm | 80 cm | 110 cm | 30° | 90° |
Light 5 | 100 cm | 20 cm | 60 cm | 60° | 30° |
Light 6 | 100 cm | 60 cm | 110 cm | 30° | 30° |
Types | Parameters |
---|---|
Camera Size | |
Depth accuracy Depth resolution | 1 m ± 6 mm 640 × 400 |
Deep field of view | H: 67.9° V: 45.3° |
RGB field of view | H: 71.0° V: 43.7° |
Baseline | |
Monitoring range | |
Synchronization accuracy | < |
Scope of work | – |
No. | Depth | Width | Depth Error | Width Error |
---|---|---|---|---|
#1 | 11.57 mm | 34.6 mm | 22.9% | 15.3% |
#2 | 8.3 mm | 11.9 mm | 17.0% | 12.5% |
#3 | 3.8 mm | 16.3 mm | 24.0% | 8.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, G.; Zhang, H.; Cheng, Y.; Xu, Y.; Wang, F.; Liu, S.; Qin, X.; Zhao, R.; Zuo, C.; Ji, A. Research on Defect Detection Method of Fusion Reactor Vacuum Chamber Based on Photometric Stereo Vision. Sensors 2024, 24, 6227. https://doi.org/10.3390/s24196227
Qin G, Zhang H, Cheng Y, Xu Y, Wang F, Liu S, Qin X, Zhao R, Zuo C, Ji A. Research on Defect Detection Method of Fusion Reactor Vacuum Chamber Based on Photometric Stereo Vision. Sensors. 2024; 24(19):6227. https://doi.org/10.3390/s24196227
Chicago/Turabian StyleQin, Guodong, Haoran Zhang, Yong Cheng, Youzhi Xu, Feng Wang, Shijie Liu, Xiaoyan Qin, Ruijuan Zhao, Congju Zuo, and Aihong Ji. 2024. "Research on Defect Detection Method of Fusion Reactor Vacuum Chamber Based on Photometric Stereo Vision" Sensors 24, no. 19: 6227. https://doi.org/10.3390/s24196227
APA StyleQin, G., Zhang, H., Cheng, Y., Xu, Y., Wang, F., Liu, S., Qin, X., Zhao, R., Zuo, C., & Ji, A. (2024). Research on Defect Detection Method of Fusion Reactor Vacuum Chamber Based on Photometric Stereo Vision. Sensors, 24(19), 6227. https://doi.org/10.3390/s24196227